These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27676468)

  • 1. Personal Vehicles Evaluated against Climate Change Mitigation Targets.
    Miotti M; Supran GJ; Kim EJ; Trancik JE
    Environ Sci Technol; 2016 Oct; 50(20):10795-10804. PubMed ID: 27676468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.
    Clark NN; Johnson DR; McKain DL; Wayne WS; Li H; Rudek J; Mongold RA; Sandoval C; Covington AN; Hailer JT
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1328-1341. PubMed ID: 28829681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentials for sustainable transportation in cities to alleviate climate change impacts.
    Mashayekh Y; Jaramillo P; Samaras C; Hendrickson CT; Blackhurst M; MacLean HL; Matthews HS
    Environ Sci Technol; 2012 Mar; 46(5):2529-37. PubMed ID: 22192244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Low-Carbon Transportation Technologies When Demand Responds to Price.
    Roy M; Ghoddusi H; Trancik JE
    Environ Sci Technol; 2022 Feb; 56(4):2096-2106. PubMed ID: 35119259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential for Electrified Vehicles to Contribute to U.S. Petroleum and Climate Goals and Implications for Advanced Biofuels.
    Meier PJ; Cronin KR; Frost EA; Runge TM; Dale BE; Reinemann DJ; Detlor J
    Environ Sci Technol; 2015 Jul; 49(14):8277-86. PubMed ID: 26086692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector.
    Melaina M; Webster K
    Environ Sci Technol; 2011 May; 45(9):3865-71. PubMed ID: 21456550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon emission targets for driving sustainable mobility with US light-duty vehicles.
    Grimes-Casey HG; Keoleian GA; Willcox B
    Environ Sci Technol; 2009 Feb; 43(3):585-90. PubMed ID: 19244987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.
    Reyna JL; Chester MV; Ahn S; Fraser AM
    Environ Sci Technol; 2015 Jan; 49(1):369-76. PubMed ID: 25438089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy technologies evaluated against climate targets using a cost and carbon trade-off curve.
    Trancik JE; Cross-Call D
    Environ Sci Technol; 2013 Jun; 47(12):6673-80. PubMed ID: 23560987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing motor vehicle greenhouse gas emissions in a non-California state: a case study of Minnesota.
    Boies A; Hankey S; Kittelson D; Marshall JD; Nussbaum P; Watts W; Wilson EJ
    Environ Sci Technol; 2009 Dec; 43(23):8721-9. PubMed ID: 19943638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing U.S. mitigation strategies for the light-duty transportation sector: what we learn from a bottom-up model.
    Yeh S; Farrell A; Plevin R; Sanstad A; Weyant J
    Environ Sci Technol; 2008 Nov; 42(22):8202-10. PubMed ID: 19068795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.
    Aggestam V; Buick J
    J Dairy Res; 2017 Aug; 84(3):360-369. PubMed ID: 28831965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How much do electric drive vehicles matter to future U.S. emissions?
    Babaee S; Nagpure AS; DeCarolis JF
    Environ Sci Technol; 2014; 48(3):1382-90. PubMed ID: 24386958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS.
    Gelfand I; Hamilton SK; Kravchenko AN; Jackson RD; Thelen KD; Robertson GP
    Environ Sci Technol; 2020 Mar; 54(5):2961-2974. PubMed ID: 32052964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs.
    Edwards MR; Klemun MM; Kim HC; Wallington TJ; Winkler SL; Tamor MA; Trancik JE
    Faraday Discuss; 2017 Aug; 200():453-474. PubMed ID: 28649687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global climate change: the quantifiable sustainability challenge.
    Princiotta FT; Loughlin DH
    J Air Waste Manag Assoc; 2014 Sep; 64(9):979-94. PubMed ID: 25282995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.