These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27677337)

  • 21. High-flux ceramic membranes with a nanomesh of metal oxide nanofibers.
    Ke XB; Zheng ZF; Liu HW; Zhu HY; Gao XP; Zhang LX; Xu NP; Wang H; Zhao HJ; Shi J; Ratinac KR
    J Phys Chem B; 2008 Apr; 112(16):5000-6. PubMed ID: 18386864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation.
    Zhu Y; Gao S; Hu L; Jin J
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13607-14. PubMed ID: 27177239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic Strength Gated Redox Current Rectification by Ferrocene Grafted in Silica Nanochannels.
    Sun L; Zhou L; Yan F; Su B
    Langmuir; 2019 Nov; 35(45):14486-14491. PubMed ID: 31614089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Mass Production Technology of Highly Permeable Nano-Porous Supports for Silica-Based Separation Membranes.
    Sawamura KI; Okamoto S; Todokoro Y
    Membranes (Basel); 2019 Aug; 9(8):. PubMed ID: 31426407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes.
    Puspasari T; Yu H; Peinemann KV
    ChemSusChem; 2016 Oct; 9(20):2908-2911. PubMed ID: 27572738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation.
    Deng C; Zhang QG; Han GL; Gong Y; Zhu AM; Liu QL
    Nanoscale; 2013 Nov; 5(22):11028-34. PubMed ID: 24072040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical Porous Structured SiO
    Shan H; Wang X; Shi F; Yan J; Yu J; Ding B
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18966-18976. PubMed ID: 28509531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation.
    Li H; Song Z; Zhang X; Huang Y; Li S; Mao Y; Ploehn HJ; Bao Y; Yu M
    Science; 2013 Oct; 342(6154):95-8. PubMed ID: 24092739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes.
    Hou J; Zhang H; Hu Y; Li X; Chen X; Kim S; Wang Y; Simon GP; Wang H
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20182-20188. PubMed ID: 29808669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic Current Rectification by Laminated Bipolar Silica Isoporous Membrane.
    Yan F; Yao L; Yang Q; Chen K; Su B
    Anal Chem; 2019 Jan; 91(2):1227-1231. PubMed ID: 30569707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique selectivity trends of highly permeable PAP[5] water channel membranes.
    Song W; Shen YX; Lang C; Saha P; Zenyuk IV; Hickey RJ; Kumar M
    Faraday Discuss; 2018 Sep; 209(0):193-204. PubMed ID: 29999507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.
    Fan X; Zhao H; Liu Y; Quan X; Yu H; Chen S
    Environ Sci Technol; 2015 Feb; 49(4):2293-300. PubMed ID: 25592275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring Molecular Permeability of Nanochannel-Micelle Membranes for Electrochemical Analysis of Antioxidants in Fruit Juices without Sample Treatment.
    Yan F; Su B
    Anal Chem; 2016 Nov; 88(22):11001-11006. PubMed ID: 27774789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
    Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nature; 2007 Feb; 445(7129):749-53. PubMed ID: 17301789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge-Gated Ion Transport through Polyelectrolyte Intercalated Amine Reduced Graphene Oxide Membranes.
    Song X; Zambare RS; Qi S; Sowrirajalu BN; James Selvaraj AP; Tang CY; Gao C
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41482-41495. PubMed ID: 29111656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective Transport through Membranes with Charged Nanochannels Formed by Scalable Self-Assembly of Random Copolymer Micelles.
    Sadeghi I; Kronenberg J; Asatekin A
    ACS Nano; 2018 Jan; 12(1):95-108. PubMed ID: 29205035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels.
    Hsu WL; Inglis DW; Jeong H; Dunstan DE; Davidson MR; Goldys EM; Harvie DJ
    Langmuir; 2014 May; 30(18):5337-48. PubMed ID: 24725102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and Nanofiltration Membrane Performance of Oriented Mesoporous Silica Thin Films on Macroporous Supports.
    Clark Wooten MK; Koganti VR; Zhou S; Rankin SE; Knutson BL
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21806-15. PubMed ID: 27479791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionic Transport and Sieving Properties of Sub-nanoporous Polymer Membranes with Tunable Channel Size.
    Cheng Y; Dong Y; Huang Q; Huang K; Lyu S; Chen Y; Duan J; Mo D; Sun Y; Liu J; Peng Y; Yao H
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9015-9026. PubMed ID: 33587586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel.
    Hsu JP; Su TC; Peng PH; Hsu SC; Zheng MJ; Yeh LH
    ACS Nano; 2019 Nov; 13(11):13374-13381. PubMed ID: 31639293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.