These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Structural insights into magnetic clusters grown inside virus capsids. Jaafar M; Aljabali AA; Berlanga I; Mas-Ballesté R; Saxena P; Warren S; Lomonossoff GP; Evans DJ; de Pablo PJ ACS Appl Mater Interfaces; 2014 Dec; 6(23):20936-42. PubMed ID: 25405995 [TBL] [Abstract][Full Text] [Related]
7. Structural determinants of mechanical resistance against breakage of a virus-based protein nanoparticle at a resolution of single amino acids. Medrano M; Valbuena A; Rodríguez-Huete A; Mateu MG Nanoscale; 2019 May; 11(19):9369-9383. PubMed ID: 31041970 [TBL] [Abstract][Full Text] [Related]
8. Structural Basis for Alternative Self-Assembly Pathways Leading to Different Human Immunodeficiency Virus Capsid-Like Nanoparticles. Escrig J; Marcos-Alcalde Í; Domínguez-Zotes S; Abia D; Gómez-Puertas P; Valbuena A; Mateu MG ACS Nano; 2024 Oct; 18(40):27465-27478. PubMed ID: 39329375 [TBL] [Abstract][Full Text] [Related]
9. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Liu Z; Qiao J; Niu Z; Wang Q Chem Soc Rev; 2012 Sep; 41(18):6178-94. PubMed ID: 22880206 [TBL] [Abstract][Full Text] [Related]
10. Plant viruses as biotemplates for materials and their use in nanotechnology. Young M; Willits D; Uchida M; Douglas T Annu Rev Phytopathol; 2008; 46():361-84. PubMed ID: 18473700 [TBL] [Abstract][Full Text] [Related]
11. An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Blum AS; Soto CM; Wilson CD; Brower TL; Pollack SK; Schull TL; Chatterji A; Lin T; Johnson JE; Amsinck C; Franzon P; Shashidhar R; Ratna BR Small; 2005 Jul; 1(7):702-6. PubMed ID: 17193509 [No Abstract] [Full Text] [Related]
13. Protein cargo encapsulation by virus-like particles: Strategies and applications. McNeale D; Dashti N; Cheah LC; Sainsbury F Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(3):e1869. PubMed ID: 36345849 [TBL] [Abstract][Full Text] [Related]
14. Viral capsids as self-assembling templates for new materials. Dedeo MT; Finley DT; Francis MB Prog Mol Biol Transl Sci; 2011; 103():353-92. PubMed ID: 22000000 [TBL] [Abstract][Full Text] [Related]
15. Virus-like nanoparticles as a novel delivery tool in gene therapy. Jeevanandam J; Pal K; Danquah MK Biochimie; 2019 Feb; 157():38-47. PubMed ID: 30408502 [TBL] [Abstract][Full Text] [Related]
16. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials. Wang Y; Douglas T Acc Chem Res; 2022 May; 55(10):1349-1359. PubMed ID: 35507643 [TBL] [Abstract][Full Text] [Related]
17. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures. Narayanan KB; Han SS Adv Colloid Interface Sci; 2017 Oct; 248():1-19. PubMed ID: 28916111 [TBL] [Abstract][Full Text] [Related]
18. Assembly/disassembly of a complex icosahedral virus to incorporate heterologous nucleic acids. Pascual E; Mata CP; Carrascosa JL; Castón JR J Phys Condens Matter; 2017 Dec; 29(49):494001. PubMed ID: 29083994 [TBL] [Abstract][Full Text] [Related]
19. Percolation Theory Reveals Biophysical Properties of Virus-like Particles. Brunk NE; Twarock R ACS Nano; 2021 Aug; 15(8):12988-12995. PubMed ID: 34296852 [TBL] [Abstract][Full Text] [Related]
20. Encapsidation of nanoparticles by red clover necrotic mosaic virus. Loo L; Guenther RH; Lommel SA; Franzen S J Am Chem Soc; 2007 Sep; 129(36):11111-7. PubMed ID: 17705477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]