These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 27677511)
41. Cytoskeletal motor-driven active self-assembly in in vitro systems. Lam AT; VanDelinder V; Kabir AM; Hess H; Bachand GD; Kakugo A Soft Matter; 2016 Jan; 12(4):988-97. PubMed ID: 26576824 [TBL] [Abstract][Full Text] [Related]
42. A printable active network actuator built from an engineered biomolecular motor. Nitta T; Wang Y; Du Z; Morishima K; Hiratsuka Y Nat Mater; 2021 Aug; 20(8):1149-1155. PubMed ID: 33875849 [TBL] [Abstract][Full Text] [Related]
43. Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Hiyama S; Inoue T; Shima T; Moritani Y; Suda T; Sutoh K Small; 2008 Apr; 4(4):410-5. PubMed ID: 18383579 [No Abstract] [Full Text] [Related]
44. High-Pressure Microscopy for Studying Molecular Motors. Nishiyama M Subcell Biochem; 2015; 72():593-611. PubMed ID: 26174400 [TBL] [Abstract][Full Text] [Related]
45. Can man-made nanomachines compete with nature biomotors? Wang J ACS Nano; 2009 Jan; 3(1):4-9. PubMed ID: 19206241 [TBL] [Abstract][Full Text] [Related]
47. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Kim HJ; Kim T; Lee M Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602 [TBL] [Abstract][Full Text] [Related]
48. Molecular motors: DNA gets a little cagey. Mao C Nat Nanotechnol; 2008 Feb; 3(2):75-6. PubMed ID: 18654463 [No Abstract] [Full Text] [Related]
49. Assembly of multienzyme complexes on DNA nanostructures. Fu J; Yang YR; Dhakal S; Zhao Z; Liu M; Zhang T; Walter NG; Yan H Nat Protoc; 2016 Nov; 11(11):2243-2273. PubMed ID: 27763626 [TBL] [Abstract][Full Text] [Related]
50. DNA molecular motor driven micromechanical cantilever arrays. Shu W; Liu D; Watari M; Riener CK; Strunz T; Welland ME; Balasubramanian S; McKendry RA J Am Chem Soc; 2005 Dec; 127(48):17054-60. PubMed ID: 16316252 [TBL] [Abstract][Full Text] [Related]
52. Controlling self-assembly of engineered peptides on graphite by rational mutation. So CR; Hayamizu Y; Yazici H; Gresswell C; Khatayevich D; Tamerler C; Sarikaya M ACS Nano; 2012 Feb; 6(2):1648-56. PubMed ID: 22233341 [TBL] [Abstract][Full Text] [Related]
53. Single molecule thermodynamics in biological motors. Taniguchi Y; Karagiannis P; Nishiyama M; Ishii Y; Yanagida T Biosystems; 2007 Apr; 88(3):283-92. PubMed ID: 17320273 [TBL] [Abstract][Full Text] [Related]
54. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Liu H; Schmidt JJ; Bachand GD; Rizk SS; Looger LL; Hellinga HW; Montemagno CD Nat Mater; 2002 Nov; 1(3):173-7. PubMed ID: 12618806 [TBL] [Abstract][Full Text] [Related]
55. Proteins as supramolecular building blocks: Nterm-Lsr2 as a new protein tecton. Ashmead HM; Negron L; Webster K; Arcus V; Gerrard JA Biopolymers; 2015 May; 103(5):260-70. PubMed ID: 25418906 [TBL] [Abstract][Full Text] [Related]
56. Building DNA nanostructures for molecular computation, templated assembly, and biological applications. Rangnekar A; LaBean TH Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350 [TBL] [Abstract][Full Text] [Related]
57. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase. Li G; Cui Q Biophys J; 2004 Feb; 86(2):743-63. PubMed ID: 14747312 [TBL] [Abstract][Full Text] [Related]
58. High-speed DNA-based rolling motors powered by RNase H. Yehl K; Mugler A; Vivek S; Liu Y; Zhang Y; Fan M; Weeks ER; Salaita K Nat Nanotechnol; 2016 Feb; 11(2):184-90. PubMed ID: 26619152 [TBL] [Abstract][Full Text] [Related]
59. DNA nanotechnology based on i-motif structures. Dong Y; Yang Z; Liu D Acc Chem Res; 2014 Jun; 47(6):1853-60. PubMed ID: 24845472 [TBL] [Abstract][Full Text] [Related]