These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 27677513)

  • 41. Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration.
    Kim W; Lee H; Kim Y; Choi CH; Lee D; Hwang H; Kim G
    Biomed Mater; 2016 Sep; 11(5):055002. PubMed ID: 27586518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates.
    Zander NE; Dong H; Steele J; Grant JT
    ACS Appl Mater Interfaces; 2014; 6(21):18502-10. PubMed ID: 25295848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine.
    Hoque J; Sangaj N; Varghese S
    Macromol Biosci; 2019 Jan; 19(1):e1800259. PubMed ID: 30295012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies.
    Guo JL; Kim YS; Mikos AG
    Biomacromolecules; 2019 Aug; 20(8):2904-2912. PubMed ID: 31282658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofunctionalized Hydrogel Microscaffolds Promote 3D Hepatic Sheet Morphology.
    Kim MH; Kumar SK; Shirahama H; Seo J; Lee JH; Zhdanov VP; Cho NJ
    Macromol Biosci; 2016 Mar; 16(3):314-21. PubMed ID: 26612190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models.
    Liaw CY; Ji S; Guvendiren M
    Adv Healthc Mater; 2018 Feb; 7(4):. PubMed ID: 29345429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Harnessing Supramolecular and Peptidic Self-Assembly for the Construction of Reinforced Polymeric Tissue Scaffolds.
    Thompson CB; Korley LTJ
    Bioconjug Chem; 2017 May; 28(5):1325-1339. PubMed ID: 28471638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanocomposite Hydrogels and Their Applications in Tissue Engineering.
    Motealleh A; Kehr NS
    Adv Healthc Mater; 2017 Jan; 6(1):. PubMed ID: 27900856
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of xanthan gum as polysaccharide in tissue engineering: A review.
    Kumar A; Rao KM; Han SS
    Carbohydr Polym; 2018 Jan; 180():128-144. PubMed ID: 29103488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.
    Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S
    Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties.
    Jun I; Lee YB; Choi YS; Engler AJ; Park H; Shin H
    Biomaterials; 2015 Jun; 54():44-54. PubMed ID: 25907038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats.
    Frasca S; Norol F; Le Visage C; Collombet JM; Letourneur D; Holy X; Sari Ali E
    J Mater Sci Mater Med; 2017 Feb; 28(2):35. PubMed ID: 28110459
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent Advances in Dendritic Macromonomers for Hydrogel Formation and Their Medical Applications.
    Ghobril C; Rodriguez EK; Nazarian A; Grinstaff MW
    Biomacromolecules; 2016 Apr; 17(4):1235-52. PubMed ID: 26978246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A self-assembling β-peptide hydrogel for neural tissue engineering.
    Motamed S; Del Borgo MP; Kulkarni K; Habila N; Zhou K; Perlmutter P; Forsythe JS; Aguilar MI
    Soft Matter; 2016 Feb; 12(8):2243-6. PubMed ID: 26853859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds.
    Butcher AL; Offeddu GS; Oyen ML
    Trends Biotechnol; 2014 Nov; 32(11):564-570. PubMed ID: 25294495
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds.
    Bhattacharyya S; Guillot S; Dabboue H; Tranchant JF; Salvetat JP
    Biomacromolecules; 2008 Feb; 9(2):505-9. PubMed ID: 18186607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications.
    Saunders L; Ma PX
    Macromol Biosci; 2019 Jan; 19(1):e1800313. PubMed ID: 30565872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.