These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
915 related articles for article (PubMed ID: 27677734)
1. Self-Assembled Materials Made from Functional Recombinant Proteins. Jang Y; Champion JA Acc Chem Res; 2016 Oct; 49(10):2188-2198. PubMed ID: 27677734 [TBL] [Abstract][Full Text] [Related]
2. Self-Assembled Recombinant Elastin and Globular Protein Vesicles with Tunable Properties for Diverse Applications. Gray MA; Rodriguez-Otero MR; Champion JA Acc Chem Res; 2024 May; 57(9):1227-1237. PubMed ID: 38624000 [TBL] [Abstract][Full Text] [Related]
3. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins. Jang Y; Choi WT; Heller WT; Ke Z; Wright ER; Champion JA Small; 2017 Sep; 13(36):. PubMed ID: 28748658 [TBL] [Abstract][Full Text] [Related]
4. Thermally triggered self-assembly of folded proteins into vesicles. Park WM; Champion JA J Am Chem Soc; 2014 Dec; 136(52):17906-9. PubMed ID: 25495148 [TBL] [Abstract][Full Text] [Related]
5. Protein Vesicles Self-Assembled from Functional Globular Proteins with Different Charge and Size. Dautel DR; Champion JA Biomacromolecules; 2021 Jan; 22(1):116-125. PubMed ID: 32886493 [TBL] [Abstract][Full Text] [Related]
6. Rational design of elastin-like polypeptide fusion proteins to tune self-assembly and properties of protein vesicles. Li Y; Dautel DR; Gray MA; McKenna ME; Champion JA J Mater Chem B; 2023 Jul; 11(27):6443-6452. PubMed ID: 37357544 [TBL] [Abstract][Full Text] [Related]
7. A chimeric fusion protein engineered with disparate functionalities-enzymatic activity and self-assembly. Wheeldon IR; Campbell E; Banta S J Mol Biol; 2009 Sep; 392(1):129-42. PubMed ID: 19577577 [TBL] [Abstract][Full Text] [Related]
8. Tuning the Structural Integrity and Mechanical Properties of Globular Protein Vesicles by Blending Crosslinkable and NonCrosslinkable Building Blocks. Tan R; Shin J; Heo J; Cole BD; Hong J; Jang Y Biomacromolecules; 2020 Oct; 21(10):4336-4344. PubMed ID: 32955862 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Coacervate-to-Vesicle Transition of Globular Fusion Proteins to Engineer Protein Vesicle Size and Membrane Heterogeneity. Jang Y; Hsieh MC; Dautel D; Guo S; Grover MA; Champion JA Biomacromolecules; 2019 Sep; 20(9):3494-3503. PubMed ID: 31460745 [TBL] [Abstract][Full Text] [Related]
16. Molecular Recognition in the Colloidal World. Elacqua E; Zheng X; Shillingford C; Liu M; Weck M Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441 [TBL] [Abstract][Full Text] [Related]
17. Peptide self-assembly: thermodynamics and kinetics. Wang J; Liu K; Xing R; Yan X Chem Soc Rev; 2016 Oct; 45(20):5589-5604. PubMed ID: 27487936 [TBL] [Abstract][Full Text] [Related]
18. Ionic Complexes of Metal Oxide Clusters for Versatile Self-Assemblies. Li B; Li W; Li H; Wu L Acc Chem Res; 2017 Jun; 50(6):1391-1399. PubMed ID: 28508633 [TBL] [Abstract][Full Text] [Related]
19. Temperature-responsive membrane permeability of recombinant fusion protein vesicles. Powers J; Jang Y Soft Matter; 2023 May; 19(18):3273-3280. PubMed ID: 37089115 [TBL] [Abstract][Full Text] [Related]
20. Chemical synthesis and characterization of elastin-like polypeptides (ELPs) with variable guest residues. Aladini F; Araman C; Becker CF J Pept Sci; 2016 May; 22(5):334-42. PubMed ID: 27005861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]