These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 27678245)
1. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. Zhou M; Chaudhury B; Hall LO; Goldgof DB; Gillies RJ; Gatenby RA J Magn Reson Imaging; 2017 Jul; 46(1):115-123. PubMed ID: 27678245 [TBL] [Abstract][Full Text] [Related]
2. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Chaddad A; Sabri S; Niazi T; Abdulkarim B Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951 [TBL] [Abstract][Full Text] [Related]
3. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time. Chaddad A; Daniel P; Desrosiers C; Toews M; Abdulkarim B IEEE J Biomed Health Inform; 2019 Mar; 23(2):795-804. PubMed ID: 29993848 [TBL] [Abstract][Full Text] [Related]
4. A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome. Chaddad A; Desrosiers C; Hassan L; Tanougast C Br J Radiol; 2016 Dec; 89(1068):20160575. PubMed ID: 27781499 [TBL] [Abstract][Full Text] [Related]
5. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. Liao X; Cai B; Tian B; Luo Y; Song W; Li Y J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929 [TBL] [Abstract][Full Text] [Related]
6. Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution. Kim JY; Gatenby RA Methods Mol Biol; 2017; 1513():61-81. PubMed ID: 27807831 [TBL] [Abstract][Full Text] [Related]
7. Survival-relevant high-risk subregion identification for glioblastoma patients: the MRI-based multiple instance learning approach. Zhang X; Lu D; Gao P; Tian Q; Lu H; Xu X; He X; Liu Y Eur Radiol; 2020 Oct; 30(10):5602-5610. PubMed ID: 32417949 [TBL] [Abstract][Full Text] [Related]
8. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis. Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935 [TBL] [Abstract][Full Text] [Related]
9. Regression based overall survival prediction of glioblastoma multiforme patients using a single discovery cohort of multi-institutional multi-channel MR images. Sanghani P; Ang BT; King NKK; Ren H Med Biol Eng Comput; 2019 Aug; 57(8):1683-1691. PubMed ID: 31104273 [TBL] [Abstract][Full Text] [Related]
10. Improve Glioblastoma Multiforme Prognosis Prediction by Using Feature Selection and Multiple Kernel Learning. Zhang Y; Li A; Peng C; Wang M IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):825-835. PubMed ID: 27071189 [TBL] [Abstract][Full Text] [Related]
12. Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Sanghani P; Ang BT; King NKK; Ren H Surg Oncol; 2018 Dec; 27(4):709-714. PubMed ID: 30449497 [TBL] [Abstract][Full Text] [Related]
13. Quantitative volumetric assessment of baseline enhancing tumor volume as an imaging biomarker predicts overall survival in patients with glioblastoma. Auer TA; Della Seta M; Collettini F; Chapiro J; Zschaeck S; Ghadjar P; Badakhshi H; Florange J; Hamm B; Budach V; Kaul D Acta Radiol; 2021 Sep; 62(9):1200-1207. PubMed ID: 32938221 [TBL] [Abstract][Full Text] [Related]
14. Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Cui Y; Tha KK; Terasaka S; Yamaguchi S; Wang J; Kudo K; Xing L; Shirato H; Li R Radiology; 2016 Feb; 278(2):546-53. PubMed ID: 26348233 [TBL] [Abstract][Full Text] [Related]
15. Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Wangaryattawanich P; Hatami M; Wang J; Thomas G; Flanders A; Kirby J; Wintermark M; Huang ES; Bakhtiari AS; Luedi MM; Hashmi SS; Rubin DL; Chen JY; Hwang SN; Freymann J; Holder CA; Zinn PO; Colen RR Neuro Oncol; 2015 Nov; 17(11):1525-37. PubMed ID: 26203066 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic utility of intravoxel incoherent motion mr imaging in differentiating primary central nervous system lymphoma from glioblastoma multiforme. Yamashita K; Hiwatashi A; Togao O; Kikuchi K; Kitamura Y; Mizoguchi M; Yoshimoto K; Kuga D; Suzuki SO; Baba S; Isoda T; Iwaki T; Iihara K; Honda H J Magn Reson Imaging; 2016 Nov; 44(5):1256-1261. PubMed ID: 27093558 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762 [TBL] [Abstract][Full Text] [Related]
18. Radiogenomics-Based Risk Prediction of Glioblastoma Multiforme with Clinical Relevance. Qian X; Tan H; Liu X; Zhao W; Chan MD; Kim P; Zhou X Genes (Basel); 2024 Jun; 15(6):. PubMed ID: 38927654 [TBL] [Abstract][Full Text] [Related]
19. Morphometric model for discrimination between glioblastoma multiforme and solitary metastasis using three-dimensional shape analysis. Yang G; Jones TL; Howe FA; Barrick TR Magn Reson Med; 2016 Jun; 75(6):2505-16. PubMed ID: 26173745 [TBL] [Abstract][Full Text] [Related]
20. Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. Czarnek N; Clark K; Peters KB; Mazurowski MA J Neurooncol; 2017 Mar; 132(1):55-62. PubMed ID: 28074320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]