These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 27678405)
1. Magnetization of 3-dimentional homochiral metal-organic frameworks for efficient and highly selective capture of phosphopeptides. Qi X; Chang C; Xu X; Zhang Y; Bai Y; Liu H J Chromatogr A; 2016 Oct; 1468():49-54. PubMed ID: 27678405 [TBL] [Abstract][Full Text] [Related]
2. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. Li D; Yin D; Chen Y; Liu Z J Chromatogr A; 2017 May; 1498():56-63. PubMed ID: 28029368 [TBL] [Abstract][Full Text] [Related]
3. Specific capture of phosphopeptides on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry targets modified by magnetic affinity nanoparticles. Tan F; Zhang Y; Wang J; Wei J; Qin P; Cai Y; Qian X Rapid Commun Mass Spectrom; 2007; 21(14):2407-14. PubMed ID: 17582624 [TBL] [Abstract][Full Text] [Related]
4. Highly efficient enrichment of phosphopeptides by a magnetic lanthanide metal-organic framework. Xie Y; Deng C Talanta; 2016 Oct; 159():1-6. PubMed ID: 27474271 [TBL] [Abstract][Full Text] [Related]
5. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis. Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884 [TBL] [Abstract][Full Text] [Related]
6. Pyridoxal 5'-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides. Wang Q; He XM; Chen X; Zhu GT; Wang RQ; Feng YQ J Chromatogr A; 2017 May; 1499():30-37. PubMed ID: 28390667 [TBL] [Abstract][Full Text] [Related]
7. Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. Zhu GT; He XM; Chen X; Hussain D; Ding J; Feng YQ J Chromatogr A; 2016 Mar; 1437():137-144. PubMed ID: 26884140 [TBL] [Abstract][Full Text] [Related]
8. CoFe2 O4 -ZnO nanoparticles for rapid microwave-assisted tryptic digestion of phosphoprotein and phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Nawaz MI; Hasan N; Wu HF Rapid Commun Mass Spectrom; 2016 Jul; 30(13):1443-53. PubMed ID: 27321831 [TBL] [Abstract][Full Text] [Related]
9. Core-shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides. Ding F; Zhao Y; Liu H; Zhang W Analyst; 2020 Jun; 145(12):4341-4351. PubMed ID: 32379252 [TBL] [Abstract][Full Text] [Related]
10. l-cysteine-modified metal-organic frameworks as multifunctional probes for efficient identification of N-linked glycopeptides and phosphopeptides in human crystalline lens. Wu Y; Liu Q; Deng C Anal Chim Acta; 2019 Jul; 1061():110-121. PubMed ID: 30926029 [TBL] [Abstract][Full Text] [Related]
11. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Chen CT; Wang LY; Ho YP Anal Bioanal Chem; 2011 Mar; 399(8):2795-806. PubMed ID: 21249345 [TBL] [Abstract][Full Text] [Related]
12. The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. Zhao L; Wu R; Han G; Zhou H; Ren L; Tian R; Zou H J Am Soc Mass Spectrom; 2008 Aug; 19(8):1176-86. PubMed ID: 18502663 [TBL] [Abstract][Full Text] [Related]
13. [Preparation of polyoxometalate-chitosan magnetic composite for the enrichment of phosphopeptides]. Jiang D; Ma J; Jia Q Se Pu; 2019 Mar; 37(3):247-251. PubMed ID: 30900851 [TBL] [Abstract][Full Text] [Related]
14. Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides. He XM; Chen X; Zhu GT; Wang Q; Yuan BF; Feng YQ ACS Appl Mater Interfaces; 2015 Aug; 7(31):17356-62. PubMed ID: 26207954 [TBL] [Abstract][Full Text] [Related]
16. Zirconium arsenate-modified silica nanoparticles for specific capture of phosphopeptides and direct analysis by matrix-assisted laser desorption/ionization mass spectrometry. Zhao PX; Guo XF; Wang H; Qi CB; Xia HS; Zhang HS Anal Bioanal Chem; 2012 Jan; 402(3):1041-56. PubMed ID: 22105300 [TBL] [Abstract][Full Text] [Related]
17. Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. Qi D; Lu J; Deng C; Zhang X J Chromatogr A; 2009 Jul; 1216(29):5533-9. PubMed ID: 19515374 [TBL] [Abstract][Full Text] [Related]
18. Development of Gd Jiang D; Li X; Ma J; Jia Q Talanta; 2018 Apr; 180():368-375. PubMed ID: 29332825 [TBL] [Abstract][Full Text] [Related]
19. Ti He Y; Zheng Q; Lin Z Mikrochim Acta; 2021 Apr; 188(5):150. PubMed ID: 33813605 [TBL] [Abstract][Full Text] [Related]
20. Epitaxial Growth of Guanidyl-Functionalized Magnetic Metal-Organic Frameworks with Multiaffinity Sites for Selective Capture of Global Phosphopeptides. Zhang N; Huang T; Xie P; Yang Z; Zhang L; Wu X; Cai Z ACS Appl Mater Interfaces; 2022 Aug; 14(34):39364-39374. PubMed ID: 35993677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]