BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27679491)

  • 1. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function.
    Luo M; Gamage TT; Arentson BW; Schlasner KN; Becker DF; Tanner JJ
    J Biol Chem; 2016 Nov; 291(46):24065-24075. PubMed ID: 27679491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.
    Luo M; Christgen S; Sanyal N; Arentson BW; Becker DF; Tanner JJ
    Biochemistry; 2014 Sep; 53(35):5661-73. PubMed ID: 25137435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer.
    Liu LK; Tanner JJ
    J Mol Biol; 2019 Feb; 431(3):524-541. PubMed ID: 30529746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
    Korasick DA; Singh H; Pemberton TA; Luo M; Dhatwalia R; Tanner JJ
    FEBS J; 2017 Sep; 284(18):3029-3049. PubMed ID: 28710792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis.
    Korasick DA; Gamage TT; Christgen S; Stiers KM; Beamer LJ; Henzl MT; Becker DF; Tanner JJ
    J Biol Chem; 2017 Jun; 292(23):9652-9665. PubMed ID: 28420730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural analysis of human ALDH9A1.
    Končitíková R; Vigouroux A; Kopečná M; Šebela M; Moréra S; Kopečný D
    Biosci Rep; 2019 Apr; 39(4):. PubMed ID: 30914451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of prolines and hydroxyprolines binding to the l-glutamate-γ-semialdehyde dehydrogenase active site of bifunctional proline utilization A.
    Campbell AC; Bogner AN; Mao Y; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Feb; 698():108727. PubMed ID: 33333077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold.
    Liu ZJ; Sun YJ; Rose J; Chung YJ; Hsiao CD; Chang WR; Kuo I; Perozich J; Lindahl R; Hempel J; Wang BC
    Nat Struct Biol; 1997 Apr; 4(4):317-26. PubMed ID: 9095201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
    Singh H; Arentson BW; Becker DF; Tanner JJ
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3389-94. PubMed ID: 24550478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli.
    Singh RK; Larson JD; Zhu W; Rambo RP; Hura GL; Becker DF; Tanner JJ
    J Biol Chem; 2011 Dec; 286(50):43144-53. PubMed ID: 22013066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The quaternary structure of Thermus thermophilus aldehyde dehydrogenase is stabilized by an evolutionary distinct C-terminal arm extension.
    Hayes K; Noor M; Djeghader A; Armshaw P; Pembroke T; Tofail S; Soulimane T
    Sci Rep; 2018 Sep; 8(1):13327. PubMed ID: 30190503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Basis of Substrate Recognition by Aldehyde Dehydrogenase 7A1.
    Luo M; Tanner JJ
    Biochemistry; 2015 Sep; 54(35):5513-22. PubMed ID: 26260980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural determinants of oligomerization of δ(1)-pyrroline-5-carboxylate dehydrogenase: identification of a hexamerization hot spot.
    Luo M; Singh RK; Tanner JJ
    J Mol Biol; 2013 Sep; 425(17):3106-20. PubMed ID: 23747974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1.
    Wyatt JW; Korasick DA; Qureshi IA; Campbell AC; Gates KS; Tanner JJ
    Arch Biochem Biophys; 2020 Sep; 691():108477. PubMed ID: 32717224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD
    Korasick DA; White TA; Chakravarthy S; Tanner JJ
    FEBS Lett; 2018 Oct; 592(19):3229-3238. PubMed ID: 30184263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
    Korasick DA; Pemberton TA; Arentson BW; Becker DF; Tanner JJ
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29295473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.
    Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF
    J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique structural features and sequence motifs of proline utilization A (PutA).
    Singh RK; Tanner JJ
    Front Biosci (Landmark Ed); 2012 Jan; 17(2):556-68. PubMed ID: 22201760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.