BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 27679491)

  • 21. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
    Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and Biochemical Characterization of Aldehyde Dehydrogenase 12, the Last Enzyme of Proline Catabolism in Plants.
    Korasick DA; Končitíková R; Kopečná M; Hájková E; Vigouroux A; Moréra S; Becker DF; Šebela M; Tanner JJ; Kopečný D
    J Mol Biol; 2019 Feb; 431(3):576-592. PubMed ID: 30580036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.
    Arentson BW; Hayes EL; Zhu W; Singh H; Tanner JJ; Becker DF
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27742866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of an atypical aldehyde dehydrogenase having bidirectional oxidizing and reducing activities.
    Jung K; Hong SH; Ngo HP; Ho TH; Ahn YJ; Oh DK; Kang LW
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):816-824. PubMed ID: 28732729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
    Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ
    Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines.
    Muñoz-Clares RA; González-Segura L; Murillo-Melo DS; Riveros-Rosas H
    Chem Biol Interact; 2017 Oct; 276():52-64. PubMed ID: 28216341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAXS fingerprints of aldehyde dehydrogenase oligomers.
    Tanner JJ
    Data Brief; 2015 Dec; 5():745-51. PubMed ID: 26693506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion.
    Steinmetz CG; Xie P; Weiner H; Hurley TD
    Structure; 1997 May; 5(5):701-11. PubMed ID: 9195888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in nucleotide specificity and catalytic mechanism between Vibrio harveyi aldehyde dehydrogenase and other members of the aldehyde dehydrogenase superfamily.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Chem Biol Interact; 2001 Jan; 130-132(1-3):29-38. PubMed ID: 11306028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells.
    Vasiliou V; Thompson DC; Smith C; Fujita M; Chen Y
    Chem Biol Interact; 2013 Feb; 202(1-3):2-10. PubMed ID: 23159885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
    Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ
    Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling-dependent protein characterization of the rice aldehyde dehydrogenase (ALDH) superfamily reveals distinct functional and structural features.
    Kotchoni SO; Jimenez-Lopez JC; Gao D; Edwards V; Gachomo EW; Margam VM; Seufferheld MJ
    PLoS One; 2010 Jul; 5(7):e11516. PubMed ID: 20634950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7.
    Končitíková R; Vigouroux A; Kopečná M; Andree T; Bartoš J; Šebela M; Moréra S; Kopečný D
    Biochem J; 2015 May; 468(1):109-23. PubMed ID: 25734422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A histidine residue in the catalytic mechanism distinguishes Vibrio harveyi aldehyde dehydrogenase from other members of the aldehyde dehydrogenase superfamily.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 2000 Nov; 39(47):14409-18. PubMed ID: 11087393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes.
    Tylichová M; Kopecný D; Moréra S; Briozzo P; Lenobel R; Snégaroff J; Sebela M
    J Mol Biol; 2010 Mar; 396(4):870-82. PubMed ID: 20026072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for Proline Catabolic Enzymes in the Metabolism of Thiazolidine Carboxylates.
    Mao Y; Seravalli J; Smith TG; Morton M; Tanner JJ; Becker DF
    Biochemistry; 2021 Nov; 60(47):3610-3620. PubMed ID: 34752700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The soybean aldehyde dehydrogenase (ALDH) protein superfamily.
    Kotchoni SO; Jimenez-Lopez JC; Kayodé AP; Gachomo EW; Baba-Moussa L
    Gene; 2012 Mar; 495(2):128-33. PubMed ID: 22226812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of aldehyde dehydrogenase 1A1 from mouse.
    Zhang X; Ouyang Z
    Biochem Biophys Res Commun; 2022 Nov; 628():141-146. PubMed ID: 36084552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.