These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 27679516)
1. The Delivery of High-Dose Dry Powder Antibiotics by a Low-Cost Generic Inhaler. Parumasivam T; Leung SS; Tang P; Mauro C; Britton W; Chan HK AAPS J; 2017 Jan; 19(1):191-202. PubMed ID: 27679516 [TBL] [Abstract][Full Text] [Related]
2. Overcoming dose limitations using the orbital(®) multi-breath dry powder inhaler. Young PM; Crapper J; Philips G; Sharma K; Chan HK; Traini D J Aerosol Med Pulm Drug Deliv; 2014 Apr; 27(2):138-47. PubMed ID: 24004178 [TBL] [Abstract][Full Text] [Related]
3. Novel Inhaled Combination Powder Containing Amorphous Colistin and Crystalline Rifapentine with Enhanced Antimicrobial Activities against Planktonic Cells and Biofilm of Pseudomonas aeruginosa for Respiratory Infections. Zhou QT; Sun SP; Chan JG; Wang P; Barraud N; Rice SA; Wang J; Li J; Chan HK Mol Pharm; 2015 Aug; 12(8):2594-603. PubMed ID: 25423590 [TBL] [Abstract][Full Text] [Related]
4. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: Air inlet size. Coates MS; Chan HK; Fletcher DF; Raper JA J Pharm Sci; 2006 Jun; 95(6):1382-92. PubMed ID: 16625656 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery. Li X; Vogt FG; Hayes D; Mansour HM Eur J Pharm Sci; 2014 Feb; 52():191-205. PubMed ID: 24215736 [TBL] [Abstract][Full Text] [Related]
6. Effect of device design on the aerosolization of a carrier-based dry powder inhaler--a case study on Aerolizer(®) Foradile (®). Zhou QT; Tong Z; Tang P; Citterio M; Yang R; Chan HK AAPS J; 2013 Apr; 15(2):511-22. PubMed ID: 23371759 [TBL] [Abstract][Full Text] [Related]
7. Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers. Li X; Vogt FG; Hayes D; Mansour HM J Pharm Sci; 2014 Sep; 103(9):2937-2949. PubMed ID: 24740732 [TBL] [Abstract][Full Text] [Related]
8. Importance of powder residence time for the aerosol delivery performance of a commercial dry powder inhaler Aerolizer(®). Jiang L; Tang Y; Zhang H; Lu X; Chen X; Zhu J J Aerosol Med Pulm Drug Deliv; 2012 Oct; 25(5):265-79. PubMed ID: 22280548 [TBL] [Abstract][Full Text] [Related]
9. In vitro aerosol performance and dose uniformity between the Foradile Aerolizer and the Oxis Turbuhaler. Chew NY; Chan HK J Aerosol Med; 2001; 14(4):495-501. PubMed ID: 11791690 [TBL] [Abstract][Full Text] [Related]
10. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler. Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648 [TBL] [Abstract][Full Text] [Related]
11. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy. Lee SH; Teo J; Heng D; Ng WK; Zhao Y; Tan RB J Pharm Sci; 2016 Apr; 105(4):1501-12. PubMed ID: 27019964 [TBL] [Abstract][Full Text] [Related]
12. Effect of Flow Rate on In Vitro Aerodynamic Performance of NEXThaler(®) in Comparison with Diskus(®) and Turbohaler(®) Dry Powder Inhalers. Buttini F; Brambilla G; Copelli D; Sisti V; Balducci AG; Bettini R; Pasquali I J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):167-78. PubMed ID: 26355743 [TBL] [Abstract][Full Text] [Related]
13. Performance of Low Air Volume Dry Powder Inhalers (LV-DPI) when Aerosolizing Excipient Enhanced Growth (EEG) Surfactant Powder Formulations. Boc S; Momin MAM; Farkas DR; Longest W; Hindle M AAPS PharmSciTech; 2021 Apr; 22(4):135. PubMed ID: 33860378 [TBL] [Abstract][Full Text] [Related]
14. Tuning aerosol performance using the multibreath Orbital® dry powder inhaler device: controlling delivery parameters and aerosol performance via modification of puck orifice geometry. Zhu B; Young PM; Ong HX; Crapper J; Flodin C; Qiao EL; Phillips G; Traini D J Pharm Sci; 2015 Jul; 104(7):2169-76. PubMed ID: 25931324 [TBL] [Abstract][Full Text] [Related]
15. Effects of Surface Composition on the Aerosolisation and Dissolution of Inhaled Antibiotic Combination Powders Consisting of Colistin and Rifampicin. Wang W; Zhou QT; Sun SP; Denman JA; Gengenbach TR; Barraud N; Rice SA; Li J; Yang M; Chan HK AAPS J; 2016 Mar; 18(2):372-84. PubMed ID: 26603890 [TBL] [Abstract][Full Text] [Related]
16. Design and in vitro performance testing of multiple air classifier technology in a new disposable inhaler concept (Twincer) for high powder doses. de Boer AH; Hagedoorn P; Westerman EM; Le Brun PP; Heijerman HG; Frijlink HW Eur J Pharm Sci; 2006 Jun; 28(3):171-8. PubMed ID: 16650739 [TBL] [Abstract][Full Text] [Related]
17. Influence of air flow on the performance of a dry powder inhaler using computational and experimental analyses. Coates MS; Chan HK; Fletcher DF; Raper JA Pharm Res; 2005 Sep; 22(9):1445-53. PubMed ID: 16132356 [TBL] [Abstract][Full Text] [Related]
18. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler. Bass K; Farkas D; Longest W AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the Changes in Aerosolization Behavior Between the Jet-Milled and Spray-Dried Colistin Powders Through Surface Energy Characterization. Jong T; Li J; Morton DA; Zhou QT; Larson I J Pharm Sci; 2016 Mar; 105(3):1156-63. PubMed ID: 26886330 [TBL] [Abstract][Full Text] [Related]
20. A novel inhaled multi-pronged attack against respiratory bacteria. Lee SH; Teo J; Heng D; Zhao Y; Ng WK; Chan HK; Tan LT; Tan RB Eur J Pharm Sci; 2015 Apr; 70():37-44. PubMed ID: 25612805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]