BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27679676)

  • 1. Freestanding 3-D microvascular networks made of alginate hydrogel as a universal tool to create microchannels inside hydrogels.
    Hu C; Sun H; Liu Z; Chen Y; Chen Y; Wu H; Ren K
    Biomicrofluidics; 2016 Jul; 10(4):044112. PubMed ID: 27679676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture.
    McNulty JD; Marti-Figueroa C; Seipel F; Plantz JZ; Ellingham T; Duddleston LJL; Goris S; Cox BL; Osswald TA; Turng LS; Ashton RS
    Acta Biomater; 2019 Sep; 95():258-268. PubMed ID: 31028908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Microchannels and Evaluation of Guided Vascularization in Biomimetic Hydrogels.
    Lee J; Lee SH; Lee BK; Park SH; Cho YS; Park Y
    Tissue Eng Regen Med; 2018 Aug; 15(4):403-413. PubMed ID: 30603564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough, permeable and biocompatible microfluidic devices formed through the buckling delamination of soft hydrogel films.
    Takahashi R; Miyazako H; Tanaka A; Ueno Y; Yamaguchi M
    Lab Chip; 2021 Apr; 21(7):1307-1317. PubMed ID: 33656028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helical spring template fabrication of cell-laden microfluidic hydrogels for tissue engineering.
    Huang G; Wang S; He X; Zhang X; Lu TJ; Xu F
    Biotechnol Bioeng; 2013 Mar; 110(3):980-9. PubMed ID: 23097012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.
    Lee MK; Rich MH; Lee J; Kong H
    Biomaterials; 2015 Jul; 58():26-34. PubMed ID: 25941779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of hydrogels in 3D-printed microchannels.
    Kim YT; Bohjanen S; Bhattacharjee N; Folch A
    Lab Chip; 2019 Sep; 19(18):3086-3093. PubMed ID: 31502633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Tapered Fluidic Microchannels Conducive to Angiogenic Sprouting within Gelatin Methacryloyl Hydrogels.
    Qi Y; Zou T; Dissanayaka WL; Wong HM; Bertassoni LE; Zhang C
    J Endod; 2021 Jan; 47(1):52-61. PubMed ID: 33045266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and cost-effective fabrication of selectively permeable calcium-alginate microfluidic device using "modified" embedded template method.
    Asthana A; Ho Lee K; Kim KO; Kim DM; Kim DP
    Biomicrofluidics; 2012 Mar; 6(1):12821-128219. PubMed ID: 22662088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro formation of vascular-like networks using hydrogels.
    Takei T; Sakai S; Yoshida M
    J Biosci Bioeng; 2016 Nov; 122(5):519-527. PubMed ID: 27117917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-on-hydrogel platform made of agar and alginate for rapid, low-cost, multidimensional test of antimicrobial susceptibility.
    Sun H; Liu Z; Hu C; Ren K
    Lab Chip; 2016 Aug; 16(16):3130-8. PubMed ID: 27452345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple, Rapid, and Large-Scale Fabrication of Multi-Branched Hydrogels Based on Viscous Fingering for Cell Culture Applications.
    Utagawa Y; Ino K; Hiramoto K; Shiku H
    Macromol Biosci; 2023 Sep; 23(9):e2300069. PubMed ID: 37055930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients.
    Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J
    Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.
    Kuo KC; Lin RZ; Tien HW; Wu PY; Li YC; Melero-Martin JM; Chen YC
    Acta Biomater; 2015 Nov; 27():151-166. PubMed ID: 26348142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of three-dimensional calcium alginate hydrogels using sacrificial templates of sugar.
    Ino K; Fukuda MT; Hiramoto K; Taira N; Nashimoto Y; Shiku H
    J Biosci Bioeng; 2020 Nov; 130(5):539-544. PubMed ID: 32758401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sheet-based extrusion bioprinting: a new multi-material paradigm providing mid-extrusion micropatterning control for microvascular applications.
    Hooper R; Cummings C; Beck A; Vazquez-Armendariz J; Rodriguez C; Dean D
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.