These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27680396)

  • 61. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of a NAPL-contaminated site using the partitioning behavior of noble gases.
    Cho I; Ju Y; Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2020 Nov; 235():103733. PubMed ID: 33113508
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Simultaneous analysis of noble gases, sulfur hexafluoride, and other dissolved gases in water.
    Brennwald MS; Hofer M; Kipfer R
    Environ Sci Technol; 2013 Aug; 47(15):8599-608. PubMed ID: 23826704
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Noble gas constraints on the fate of arsenic in groundwater.
    Lightfoot AK; Brennwald MS; Prommer H; Stopelli E; Berg M; Glodowska M; Schneider M; Kipfer R
    Water Res; 2022 May; 214():118199. PubMed ID: 35220067
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Anthropogenic and natural methane emissions from a shale gas exploration area of Quebec, Canada.
    Pinti DL; Gelinas Y; Moritz AM; Larocque M; Sano Y
    Sci Total Environ; 2016 Oct; 566-567():1329-1338. PubMed ID: 27267724
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effective permeabilities of abandoned oil and gas wells: analysis of data from Pennsylvania.
    Kang M; Baik E; Miller AR; Bandilla KW; Celia MA
    Environ Sci Technol; 2015 Apr; 49(7):4757-64. PubMed ID: 25768798
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia.
    Currell M; Banfield D; Cartwright I; Cendón DI
    Environ Sci Pollut Res Int; 2017 May; 24(15):13168-13183. PubMed ID: 27497852
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In-well degassing issues for measurements of dissolved gases in groundwater.
    Roy JW; Ryan MC
    Ground Water; 2010; 48(6):869-77. PubMed ID: 20456503
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quality and age of shallow groundwater in the Bakken Formation production area, Williston Basin, Montana and North Dakota.
    McMahon PB; Caldwell RR; Galloway JM; Valder JF; Hunt AG
    Ground Water; 2015 Apr; 53 Suppl 1():81-94. PubMed ID: 25392910
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Groundwater protection and unconventional gas extraction: the critical need for field-based hydrogeological research.
    Jackson RE; Gorody AW; Mayer B; Roy JW; Ryan MC; Van Stempvoort DR
    Ground Water; 2013; 51(4):488-510. PubMed ID: 23745972
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Membrane inlet mass spectrometer for the quasi-continuous on-site analysis of dissolved gases in groundwater.
    Mächler L; Brennwald MS; Kipfer R
    Environ Sci Technol; 2012 Aug; 46(15):8288-96. PubMed ID: 22775356
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Source and fate of hydraulic fracturing water in the Barnett Shale: a historical perspective.
    Nicot JP; Scanlon BR; Reedy RC; Costley RA
    Environ Sci Technol; 2014 Feb; 48(4):2464-71. PubMed ID: 24467212
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Drinking water while fracking: now and in the future.
    Brantley SL
    Ground Water; 2015; 53(1):21-3. PubMed ID: 25713828
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.
    Heilweil VM; Stolp BJ; Kimball BA; Susong DD; Marston TM; Gardner PM
    Ground Water; 2013; 51(4):511-24. PubMed ID: 23758706
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intermediate-Scale Laboratory Investigation of Stray Gas Migration Impacts: Methane Source Architecture and Dissolution.
    Van De Ven CJC; Mumford KG
    Environ Sci Technol; 2020 May; 54(10):6299-6307. PubMed ID: 32343895
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Changes in Deep Groundwater Flow Patterns Related to Oil and Gas Activities.
    Jellicoe K; McIntosh JC; Ferguson G
    Ground Water; 2022 Jan; 60(1):47-63. PubMed ID: 34519028
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Big Groundwater Data Sets Reveal Possible Rare Contamination Amid Otherwise Improved Water Quality for Some Analytes in a Region of Marcellus Shale Development.
    Wen T; Niu X; Gonzales M; Zheng G; Li Z; Brantley SL
    Environ Sci Technol; 2018 Jun; 52(12):7149-7159. PubMed ID: 29783843
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells.
    Boothroyd IM; Almond S; Qassim SM; Worrall F; Davies RJ
    Sci Total Environ; 2016 Mar; 547():461-469. PubMed ID: 26822472
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Road salting and natural brine migration revealed as major sources of groundwater contamination across regions of northern Appalachia with and without unconventional oil and gas development.
    Epuna F; Shaheen SW; Wen T
    Water Res; 2022 Oct; 225():119128. PubMed ID: 36162296
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A New in Situ Method for Tracing Denitrification in Riparian Groundwater.
    Popp AL; Manning CC; Brennwald MS; Kipfer R
    Environ Sci Technol; 2020 Feb; 54(3):1562-1572. PubMed ID: 31904942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.