These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27680538)

  • 61. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli.
    Kim MJ; Kim BG; Ahn JH
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7195-204. PubMed ID: 23771780
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase.
    Zhang X; Agrawal A; San KY
    Biotechnol Prog; 2012; 28(1):60-5. PubMed ID: 22038854
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biosynthesis of plant hemostatic dencichine in Escherichia coli.
    Li W; Zhou Z; Li X; Ma L; Guan Q; Zheng G; Liang H; Yan Y; Shen X; Wang J; Sun X; Yuan Q
    Nat Commun; 2022 Sep; 13(1):5492. PubMed ID: 36123371
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
    Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2011 Apr; 108(4):867-79. PubMed ID: 21404260
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evolution of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae.
    Helmstaedt K; Strittmatter A; Lipscomb WN; Braus GH
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9784-9. PubMed ID: 15987779
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered
    Lenzen C; Wynands B; Otto M; Bolzenius J; Mennicken P; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():130. PubMed ID: 31245364
    [TBL] [Abstract][Full Text] [Related]  

  • 69. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering.
    Guo X; Li Z; Wang X; Wang J; Chala J; Lu Y; Zhang H
    Biotechnol Bioeng; 2019 Dec; 116(12):3349-3359. PubMed ID: 31529699
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.
    Vargas-Tah A; Gosset G
    Front Bioeng Biotechnol; 2015; 3():116. PubMed ID: 26347861
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efficient biosynthesis of pinosylvin from lignin-derived cinnamic acid by metabolic engineering of Escherichia coli.
    Hu Y; Zhang C; Zou L; Zheng Z; Ouyang J
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):136. PubMed ID: 36503554
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives.
    Feng C; Chen J; Ye W; Liao K; Wang Z; Song X; Qiao M
    Front Bioeng Biotechnol; 2022; 10():833920. PubMed ID: 35127664
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Construction of an Artificial Biosynthetic Pathway for the Styrylpyrone Compound 11-Methoxy-Bisnoryangonin Produced in Engineered
    Heo KT; Lee B; Jang JH; Ahn JO; Hong YS
    Front Microbiol; 2021; 12():714335. PubMed ID: 34456894
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Resveratrol biosynthesis, optimization, induction, bio-transformation and bio-degradation in mycoendophytes.
    Abo-Kadoum MA; Abouelela ME; Al Mousa AA; Abo-Dahab NF; Mosa MA; Helmy YA; Hassane AMA
    Front Microbiol; 2022; 13():1010332. PubMed ID: 36304949
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cell-suspension culture of Arachis hypogaea L.: model system of specific enzyme induction in secondary metabolism.
    Rolfs CH; Schön H; Steffens M; Kindl H
    Planta; 1987 Oct; 172(2):238-44. PubMed ID: 24225876
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design of stable and self-regulated microbial consortia for chemical synthesis.
    Li X; Zhou Z; Li W; Yan Y; Shen X; Wang J; Sun X; Yuan Q
    Nat Commun; 2022 Mar; 13(1):1554. PubMed ID: 35322005
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel process for obtaining phenylpropanoic acid precursor using
    Liang JL; Guo L; Sun P; Jiang B; Lin J; Guo W; Wan H
    Food Sci Biotechnol; 2016; 25(3):795-801. PubMed ID: 30263338
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cultured cells of Arachis hypogaea susceptible to induction of stilbene synthase (resveratrol-forming).
    Rolfs CH; Fritzemeier KH; Kindl H
    Plant Cell Rep; 1981 Dec; 1(2):83-5. PubMed ID: 24258868
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differential regulation of genes for resveratrol synthase in cell cultures ofArachis hypogaea L.
    Lanz T; Schröder G; Schröder J
    Planta; 1990 May; 181(2):169-75. PubMed ID: 24196732
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Action of ultraviolet-C on stilbene formation in callus ofArachis hypogaea.
    Fritzemeier KH; Rolfs CH; Pfau J; Kindl H
    Planta; 1983 Jan; 159(1):25-9. PubMed ID: 24258082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.