BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2768083)

  • 1. A temporal bone preparation for the study of cochlear micromechanics at the cellular level.
    Ulfendahl M; Flock A; Khanna SM
    Hear Res; 1989 Jun; 40(1-2):55-64. PubMed ID: 2768083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanical effects in the cochlea of tetracaine.
    Jäger W; Khanna SM; Flock B; Flock A
    Hear Res; 1999 Aug; 134(1-2):179-85. PubMed ID: 10452387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of opening and resealing the cochlea on the mechanical response in the isolated temporal bone preparation.
    Ulfendahl M; Khanna SM; Flock A
    Hear Res; 1991 Dec; 57(1):31-7. PubMed ID: 1774209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surgical anatomy of the guinea pig ear.
    Asarch R; Abramson M; Litton WB
    Ann Otol Rhinol Laryngol; 1975; 84(2 PART 1):250-5. PubMed ID: 1124912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustically induced vibrations of the Reissner's membrane in the guinea-pig inner ear.
    Ulfendahl M; Khanna SM; Decraemer WF
    Acta Physiol Scand; 1996 Nov; 158(3):275-85. PubMed ID: 8931771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle ear vibration and sound pressure measurements in the isolated cochlea preparation.
    Khanna SM; Flock A; Ulfendahl M; Decraemer WF
    Acta Otolaryngol Suppl; 1989; 467():131-7. PubMed ID: 2516687
    [No Abstract]   [Full Text] [Related]  

  • 10. Middle ear, cochlea, and Tonndorf.
    Zwislocki JJ
    Am J Otolaryngol; 1981 Aug; 2(3):240-50. PubMed ID: 7025677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comments on "Species differences in cochlear fatigue related to acoustics of outer and middle ears of guinea pig and chinchilla" (J. Acoust. Soc. Am. 56, 929-934 (1974)).
    Sinyor A; Laszlo CA
    J Acoust Soc Am; 1976 Feb; 59(2):472. PubMed ID: 1249335
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Amplitude and phase of cochlear microphonics as a function of the changes of pressure inside the tympanic bulla in the gerbil and guinea pig].
    AUBRY M; PIALOUX P; BURGEAT M
    Ann Otolaryngol; 1962 Jun; 79():387-94. PubMed ID: 13863191
    [No Abstract]   [Full Text] [Related]  

  • 15. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical tuning characteristics of the hearing organ measured at the sensory cells in the gerbil temporal bone preparation.
    Ulfendahl M; Khanna SM
    Pflugers Arch; 1993 Jul; 424(2):95-104. PubMed ID: 8414906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones.
    Magnan P; Avan P; Dancer A; Smurzynski J; Probst R
    Hear Res; 1997 May; 107(1-2):41-5. PubMed ID: 9165345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of caffeine on the micromechanics of the isolated cochlea.
    Ulfendahl M; Khanna SM; Flock A
    Acta Otolaryngol Suppl; 1989; 467():221-8. PubMed ID: 2626932
    [No Abstract]   [Full Text] [Related]  

  • 20. Characteristics of the travelling wave in the low-frequency region of a temporal-bone preparation of the guinea-pig cochlea.
    Hemmert W; Zenner H; Gummer AW
    Hear Res; 2000 Apr; 142(1-2):184-202. PubMed ID: 10748338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.