These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2768083)

  • 21. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient response of the human ear to impulsive stimuli: A finite element analysis.
    Zhang J; Tian J; Ta N; Rao Z
    J Acoust Soc Am; 2018 May; 143(5):2768. PubMed ID: 29857768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subharmonic distortion in ear canal pressure and intracochlear pressure and motion.
    Huang S; Dong W; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):461-71. PubMed ID: 22526734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig.
    Zhao C; Knisely KE; Colesa DJ; Pfingst BE; Raphael Y; Grosh K
    Sci Rep; 2019 Mar; 9(1):3711. PubMed ID: 30842456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation.
    Ulfendahl M; Khanna SM; Löfstrand P
    Eur J Neurosci; 1993 Jun; 5(6):713-23. PubMed ID: 8261142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry.
    Ulfendahl M; Khanna SM; Heneghan C
    Neuroreport; 1995 May; 6(8):1157-60. PubMed ID: 7662897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct evidence of cubic difference tone propagation by intracochlear acoustic pressure measurements in the guinea-pig.
    Avan P; Magnan P; Smurzynski J; Probst R; Dancer A
    Eur J Neurosci; 1998 May; 10(5):1764-70. PubMed ID: 9751148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracochlear acoustic pressure measurements: transfer functions of the middle ear and cochlear mechanics.
    Magnan P; Dancer A; Probst R; Smurzynski J; Avan P
    Audiol Neurootol; 1999; 4(3-4):123-8. PubMed ID: 10187919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Relationship of distortion product in cochlea with cochlear activity revealed by laser interferometry].
    Long X; Zhang Y; Lu J; Long C
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Sep; 29(18):1644-7. PubMed ID: 26790268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distortion in the cochlea: acoustic f2-f1 at low stimulus levels.
    Brown AM
    Hear Res; 1993 Nov; 70(2):160-6. PubMed ID: 8294260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-linear response to amplitude-modulated waves in the apical turn of the guinea pig cochlea.
    Khanna SM
    Hear Res; 2002 Dec; 174(1-2):107-23. PubMed ID: 12433402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography.
    Ramamoorthy S; Zhang Y; Petrie T; Fridberger A; Ren T; Wang R; Jacques SL; Nuttall AL
    J Biomed Opt; 2016 Feb; 21(2):25003. PubMed ID: 26836207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea.
    Ulfendahl M; Khanna SM; Fridberger A; Flock A; Flock B; Jäger W
    J Neurophysiol; 1996 Dec; 76(6):3850-62. PubMed ID: 8985883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.
    Bergin MJ; Bird PA; Vlajkovic SM; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):147-54. PubMed ID: 26493491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic input impedance of the stapes and cochlea in human temporal bones.
    Merchant SN; Ravicz ME; Rosowski JJ
    Hear Res; 1996 Aug; 97(1-2):30-45. PubMed ID: 8844184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomy of the guinea pig temporal bone.
    Goksu N; Haziroglu R; Kemaloglu Y; Karademir N; Bayramoglu I; Akyildiz N
    Ann Otol Rhinol Laryngol; 1992 Aug; 101(8):699-704. PubMed ID: 1497279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy.
    Voie AH
    Hear Res; 2002 Sep; 171(1-2):119-128. PubMed ID: 12204356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sound-evoked efflux of excitatory amino acids in the guinea-pig cochlea in vitro.
    Jäger W; Goiny M; Herrera-Marschitz M; Flock A; Hökfelt T; Brundin L
    Exp Brain Res; 1998 Aug; 121(4):425-32. PubMed ID: 9746149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.