These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27680935)

  • 21. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.
    Hultman J; Waldrop MP; Mackelprang R; David MM; McFarland J; Blazewicz SJ; Harden J; Turetsky MR; McGuire AD; Shah MB; VerBerkmoes NC; Lee LH; Mavrommatis K; Jansson JK
    Nature; 2015 May; 521(7551):208-12. PubMed ID: 25739499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.
    Hicks Pries CE; van Logtestijn RS; Schuur EA; Natali SM; Cornelissen JH; Aerts R; Dorrepaal E
    Glob Chang Biol; 2015 Dec; 21(12):4508-19. PubMed ID: 26150277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Past extreme warming events linked to massive carbon release from thawing permafrost.
    DeConto RM; Galeotti S; Pagani M; Tracy D; Schaefer K; Zhang T; Pollard D; Beerling DJ
    Nature; 2012 Apr; 484(7392):87-91. PubMed ID: 22481362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydropower dams can help mitigate the global warming impact of wetlands.
    Muller M
    Nature; 2019 Feb; 566(7744):315-317. PubMed ID: 30783293
    [No Abstract]   [Full Text] [Related]  

  • 25. Small thaw ponds: an unaccounted source of methane in the Canadian high Arctic.
    Negandhi K; Laurion I; Whiticar MJ; Galand PE; Xu X; Lovejoy C
    PLoS One; 2013; 8(11):e78204. PubMed ID: 24236014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extensive loss of past permafrost carbon but a net accumulation into present-day soils.
    Lindgren A; Hugelius G; Kuhry P
    Nature; 2018 Aug; 560(7717):219-222. PubMed ID: 30069043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.
    Hilton RG; Galy V; Gaillardet J; Dellinger M; Bryant C; O'Regan M; Gröcke DR; Coxall H; Bouchez J; Calmels D
    Nature; 2015 Aug; 524(7563):84-7. PubMed ID: 26245581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of a novel methanogen prevalent in thawing permafrost.
    Mondav R; Woodcroft BJ; Kim EH; McCalley CK; Hodgkins SB; Crill PM; Chanton J; Hurst GB; VerBerkmoes NC; Saleska SR; Hugenholtz P; Rich VI; Tyson GW
    Nat Commun; 2014; 5():3212. PubMed ID: 24526077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate science: Understand Arctic methane variability.
    Christensen TR
    Nature; 2014 May; 509(7500):279-81. PubMed ID: 24834515
    [No Abstract]   [Full Text] [Related]  

  • 30. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula.
    Lara MJ; McGuire AD; Euskirchen ES; Tweedie CE; Hinkel KM; Skurikhin AN; Romanovsky VE; Grosse G; Bolton WR; Genet H
    Glob Chang Biol; 2015 Apr; 21(4):1634-51. PubMed ID: 25258295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China.
    Song C; Wang X; Miao Y; Wang J; Mao R; Song Y
    Sci Total Environ; 2014 Jul; 487():604-10. PubMed ID: 24135025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of changing temperature in microbial metabolic processes during permafrost thaw.
    Messan KS; Jones RM; Doherty SJ; Foley K; Douglas TA; Barbato RA
    PLoS One; 2020; 15(4):e0232169. PubMed ID: 32353013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permafrost thaw and implications for the fate and transport of tritium in the Canadian north.
    Bond MJ; Carr J
    J Environ Radioact; 2018 Dec; 192():295-311. PubMed ID: 30015315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.
    Tian H; Lu C; Ciais P; Michalak AM; Canadell JG; Saikawa E; Huntzinger DN; Gurney KR; Sitch S; Zhang B; Yang J; Bousquet P; Bruhwiler L; Chen G; Dlugokencky E; Friedlingstein P; Melillo J; Pan S; Poulter B; Prinn R; Saunois M; Schwalm CR; Wofsy SC
    Nature; 2016 Mar; 531(7593):225-8. PubMed ID: 26961656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Freak US winters linked to Arctic warming.
    Schiermeier Q
    Nature; 2021 Sep; 597(7875):165. PubMed ID: 34480143
    [No Abstract]   [Full Text] [Related]  

  • 36. Biogeochemistry: agriculture and the global carbon cycle.
    MacBean N; Peylin P
    Nature; 2014 Nov; 515(7527):351-2. PubMed ID: 25409823
    [No Abstract]   [Full Text] [Related]  

  • 37. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.
    Drake TW; Wickland KP; Spencer RG; McKnight DM; Striegl RG
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13946-51. PubMed ID: 26504243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methane bubbling from northern lakes: present and future contributions to the global methane budget.
    Walter KM; Smith LC; Chapin FS
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1657-76. PubMed ID: 17513268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The world on tilt.
    Delamothe T
    BMJ; 2012 Mar; 344():e2207. PubMed ID: 22438387
    [No Abstract]   [Full Text] [Related]  

  • 40. Vast costs of Arctic change.
    Whiteman G; Hope C; Wadhams P
    Nature; 2013 Jul; 499(7459):401-3. PubMed ID: 23887416
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.