These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27680950)

  • 21. Expression of mRNAs encoding alpha and beta subunit isoforms of Na,K-ATPase in the vestibular labyrinth and endolymphatic sac of the rat.
    Fina M; Ryan A
    Mol Cell Neurosci; 1994 Dec; 5(6):604-13. PubMed ID: 7704435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endocochlear potential depends on Cl- channels: mechanism underlying deafness in Bartter syndrome IV.
    Rickheit G; Maier H; Strenzke N; Andreescu CE; De Zeeuw CI; Muenscher A; Zdebik AA; Jentsch TJ
    EMBO J; 2008 Nov; 27(21):2907-17. PubMed ID: 18833191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Ultrastructure of the tegmentum vasculosum of the chicken cochlea].
    Ganeshina OT
    Zh Evol Biokhim Fiziol; 1985; 21(3):299-302. PubMed ID: 4013570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of endocochlear potential generation by stria vascularis.
    Salt AN; Melichar I; Thalmann R
    Laryngoscope; 1987 Aug; 97(8 Pt 1):984-91. PubMed ID: 3613802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructure and blood supply of the tegmentum vasculosum in the cochlea of the duckling.
    Hossler FE; Olson KR; Musil G; McKamey MI
    Hear Res; 2002 Feb; 164(1-2):155-65. PubMed ID: 11950535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline.
    Ohlemiller KK; Rice ME; Lett JM; Gagnon PM
    Hear Res; 2009 Mar; 249(1-2):1-14. PubMed ID: 19141317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological role of L-type Ca2+ channels in marginal cells in the stria vascularis of guinea pigs.
    Inui T; Mori Y; Watanabe M; Takamaki A; Yamaji J; Sohma Y; Yoshida R; Takenaka H; Kubota T
    J Physiol Sci; 2007 Oct; 57(5):287-98. PubMed ID: 17963592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations.
    Ciuman RR
    J Laryngol Otol; 2009 Feb; 123(2):151-62. PubMed ID: 18570690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute ischemia causes 'dark cell' change of strial marginal cells in gerbil cochlea.
    Ando M; Takeuchi S; Kakigi A; Raicu V; Yagyu K; Sato T
    Cell Tissue Res; 2002 Aug; 309(2):229-35. PubMed ID: 12172782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential.
    Patuzzi R
    Hear Res; 2011 Jul; 277(1-2):4-19. PubMed ID: 21329750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neither endocochlear potential nor tegmentum vasculosum are affected in hearing impaired belgian waterslager canaries.
    Gleich O; Dooling RJ; Ryals BM
    Hear Res; 2000 Apr; 142(1-2):56-62. PubMed ID: 10748328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. KCNQ1/KCNE1 K+ channel and P2Y4 receptor are co-expressed from the time of birth in the apical membrane of rat strial marginal cells.
    Hur DG; Lee JH; Oh SH; Kim YH; Lee JH; Shin DH; Chang SO; Kim CS
    Acta Otolaryngol Suppl; 2007 Oct; (558):30-5. PubMed ID: 17882567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced Membrane Insertion of CLC-K by V33L Barttin Results in Loss of Hearing, but Leaves Kidney Function Intact.
    Tan H; Bungert-Plümke S; Fahlke C; Stölting G
    Front Physiol; 2017; 8():269. PubMed ID: 28555110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strial dysfunction in the MRL-Fas mouse.
    Ruckenstein MJ; Milburn M; Hu L
    Otolaryngol Head Neck Surg; 1999 Oct; 121(4):452-6. PubMed ID: 10504603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ototoxicity of kanamycin sulfate and the barriers in the inner ear.
    Komune S; Snow JB
    Otolaryngol Head Neck Surg; 1981; 89(6):1013-8. PubMed ID: 6801580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultracytochemical study of Ouabain-sensitive, potassium-dependent p-nitrophenylphosphatase activity in the inner ear of the squirrel monkey.
    Yoshihara T; Usami S; Igarashi M; Fermin CD
    Acta Otolaryngol; 1987; 103(5-6):161-9. PubMed ID: 21449637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The experimental research of inner ear metabolism and electrical physiology of autoimmune sensorineural hearing loss].
    Tan C; Cao Y; Hu P
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1998 Sep; 12(9):407-10. PubMed ID: 11263148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volumetric and dimensional analysis of the guinea pig inner ear.
    Shinomori Y; Spack DS; Jones DD; Kimura RS
    Ann Otol Rhinol Laryngol; 2001 Jan; 110(1):91-8. PubMed ID: 11201817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of transient receptor potential vanilloid (TRPV) 1, 2, 3, and 4 in mouse inner ear.
    Ishibashi T; Takumida M; Akagi N; Hirakawa K; Anniko M
    Acta Otolaryngol; 2008; 128(12):1286-93. PubMed ID: 18607942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Culture of marginal cells from guinea pig cochlear stria vascularis explants].
    Zhang Y; Kong W
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2002 Jul; 16(7):352-4. PubMed ID: 15510738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.