These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 27681162)

  • 1. The backtracking search optimization algorithm for frequency band and time segment selection in motor imagery-based brain-computer interfaces.
    Wei Z; Wei Q
    J Integr Neurosci; 2016 Sep; 15(3):347-364. PubMed ID: 27681162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces.
    Wei Q; Wei Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S1523-32. PubMed ID: 26405916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.
    Dai S; Wei Q
    J Integr Neurosci; 2017; 16(3):241-254. PubMed ID: 28891513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG.
    Peterson V; Wyser D; Lambercy O; Spies R; Gassert R
    J Neural Eng; 2019 Feb; 16(1):016019. PubMed ID: 30623892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.
    Zhang Y; Wang Y; Jin J; Wang X
    Int J Neural Syst; 2017 Mar; 27(2):1650032. PubMed ID: 27377661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.
    Miao M; Zeng H; Wang A; Zhao C; Liu F
    J Neurosci Methods; 2017 Feb; 278():13-24. PubMed ID: 28012854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks.
    Blanco-Diaz CF; Antelis JM; Ruiz-Olaya AF
    J Neurosci Methods; 2022 Apr; 371():109495. PubMed ID: 35150764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
    Luo J; Wang J; Xu R; Xu K
    J Neurosci Methods; 2019 Jul; 323():98-107. PubMed ID: 31141703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis.
    Fu R; Han M; Tian Y; Shi P
    J Neurosci Methods; 2020 Sep; 343():108833. PubMed ID: 32619588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training.
    Liu Y; Zhang H; Chen M; Zhang L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):169-79. PubMed ID: 26302519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification.
    Higashi H; Tanaka T
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):1100-10. PubMed ID: 22949044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channel selection in motor imaginary-based brain-computer interfaces: a particle swarm optimization algorithm.
    Zhang L; Wei Q
    J Integr Neurosci; 2019 Jun; 18(2):141-152. PubMed ID: 31321955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems.
    Shin Y; Lee S; Lee J; Lee HN
    J Neural Eng; 2012 Oct; 9(5):056002. PubMed ID: 22872668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time sparsification of EEG signals in motor-imagery based brain computer interfaces.
    Higashi H; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4271-4. PubMed ID: 23366871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.