These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 27681369)
1. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity. Woo JM; Kim JW; Song JW; Blank LM; Park JB PLoS One; 2016; 11(9):e0163265. PubMed ID: 27681369 [TBL] [Abstract][Full Text] [Related]
2. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli. Cho YH; Kim SJ; Kim JY; Lee DH; Park K; Park YC Appl Microbiol Biotechnol; 2018 Sep; 102(17):7407-7416. PubMed ID: 29936545 [TBL] [Abstract][Full Text] [Related]
3. Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid. Seo JH; Kim HH; Jeon EY; Song YH; Shin CS; Park JB Sci Rep; 2016 Jun; 6():28223. PubMed ID: 27311560 [TBL] [Abstract][Full Text] [Related]
4. Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid. Woo JM; Jeon EY; Seo EJ; Seo JH; Lee DY; Yeon YJ; Park JB Sci Rep; 2018 Jul; 8(1):10280. PubMed ID: 29980730 [TBL] [Abstract][Full Text] [Related]
5. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase. Baek AH; Jeon EY; Lee SM; Park JB Biotechnol Bioeng; 2015 May; 112(5):889-95. PubMed ID: 25545273 [TBL] [Abstract][Full Text] [Related]
6. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane. Jeon EY; Song JW; Cha HJ; Lee SM; Lee J; Park JB J Biotechnol; 2018 Sep; 281():161-167. PubMed ID: 30016739 [TBL] [Abstract][Full Text] [Related]
7. Continuous supply of glucose and glycerol enhances biotransformation of ricinoleic acid to (E)-11-(heptanoyloxy) undec-9-enoic acid in recombinant Escherichia coli. Cho YH; Kim SJ; Kim HW; Kim JY; Gwak JS; Chung D; Kim KH; Park K; Park YC J Biotechnol; 2017 Jul; 253():34-39. PubMed ID: 28536060 [TBL] [Abstract][Full Text] [Related]
8. Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid. Seo EJ; Kang CW; Woo JM; Jang S; Yeon YJ; Jung GY; Park JB Metab Eng; 2019 Jul; 54():137-144. PubMed ID: 30953778 [TBL] [Abstract][Full Text] [Related]
9. Aldehyde oxidoreductase as a biocatalyst: Reductions of vanillic acid. Venkitasubramanian P; Daniels L; Das S; Lamm AS; Rosazza JP Enzyme Microb Technol; 2008 Jan; 42(2):130-7. PubMed ID: 22578862 [TBL] [Abstract][Full Text] [Related]
11. Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Jeon EY; Baek AH; Bornscheuer UT; Park JB Appl Microbiol Biotechnol; 2015 Aug; 99(15):6267-75. PubMed ID: 25636834 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids. Dong G; Zhao Y; Ding W; Xu S; Zhang Q; Zhao H; Shi S Metab Eng; 2024 Mar; 82():100-109. PubMed ID: 38325640 [TBL] [Abstract][Full Text] [Related]
13. Production of 3-O-xylosyl quercetin in Escherichia coli. Pandey RP; Malla S; Simkhada D; Kim BG; Sohng JK Appl Microbiol Biotechnol; 2013 Mar; 97(5):1889-901. PubMed ID: 23053089 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of transcriptional regulatory elements of glutamate-dependent acid-resistance systems of Shigella flexneri and Escherichia coli O157:H7. Bhagwat AA; Bhagwat M FEMS Microbiol Lett; 2004 May; 234(1):139-47. PubMed ID: 15109732 [TBL] [Abstract][Full Text] [Related]
15. Endocytosing Escherichia coli as a Whole-Cell Biocatalyst of Fatty Acids. Shin J; Yu J; Park M; Kim C; Kim H; Park Y; Ban C; Seydametova E; Song YH; Shin CS; Chung KH; Woo JM; Chung H; Park JB; Kweon DH ACS Synth Biol; 2019 May; 8(5):1055-1066. PubMed ID: 31018087 [TBL] [Abstract][Full Text] [Related]
16. Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Sudheer PDVN; Seo D; Kim EJ; Chauhan S; Chunawala JR; Choi KY Enzyme Microb Technol; 2018 Dec; 119():45-51. PubMed ID: 30243386 [TBL] [Abstract][Full Text] [Related]
17. Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes. Bhagwat AA; Chan L; Han R; Tan J; Kothary M; Jean-Gilles J; Tall BD Infect Immun; 2005 Aug; 73(8):4993-5003. PubMed ID: 16041014 [TBL] [Abstract][Full Text] [Related]
18. Improvement of sabinene tolerance of Wu T; Liu J; Li M; Zhang G; Liu L; Li X; Men X; Xian M; Zhang H Biotechnol Biofuels; 2020; 13():79. PubMed ID: 32346395 [TBL] [Abstract][Full Text] [Related]
19. Oxidative decarboxylation of mandelic acid derivative by recombinant Escherichia coli: a novel method of ethyl vanillin synthesis. Pan XX; Li JJ; Wang MG; He WS; Jia CS; Zhang XM; Feng B; Li DL; Zeng Z Biotechnol Lett; 2013 Jun; 35(6):921-7. PubMed ID: 23430129 [TBL] [Abstract][Full Text] [Related]
20. Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid. Seo EJ; Yeon YJ; Seo JH; Lee JH; Boñgol JP; Oh Y; Park JM; Lim SM; Lee CG; Park JB Bioresour Technol; 2018 Mar; 251():288-294. PubMed ID: 29288957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]