These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 27681665)
1. Flow Injection Single Particle Inductively Coupled Plasma Mass Spectrometry: An Original Simple Approach for the Characterization of Metal-Based Nanoparticles. Lamsal RP; Jerkiewicz G; Beauchemin D Anal Chem; 2016 Nov; 88(21):10552-10558. PubMed ID: 27681665 [TBL] [Abstract][Full Text] [Related]
2. Single particle inductively coupled plasma mass spectrometry with and without flow injection for the characterization of nickel nanoparticles. Lamsal RP; Houache MSE; Williams A; Baranova E; Jerkiewicz G; Beauchemin D Anal Chim Acta; 2020 Jul; 1120():67-74. PubMed ID: 32475393 [TBL] [Abstract][Full Text] [Related]
3. Single particle inductively coupled plasma mass spectrometry and its variations for the analysis of nanoparticles. Zhou Z; Beauchemin D Chem Commun (Camb); 2024 Feb; 60(14):1826-1839. PubMed ID: 38116614 [TBL] [Abstract][Full Text] [Related]
4. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Pace HE; Rogers NJ; Jarolimek C; Coleman VA; Gray EP; Higgins CP; Ranville JF Environ Sci Technol; 2012 Nov; 46(22):12272-80. PubMed ID: 22780106 [TBL] [Abstract][Full Text] [Related]
5. Characterization of platinum nanoparticles for fuel cell applications by single particle inductively coupled plasma mass spectrometry. Lamsal RP; Hineman A; Stephan C; Tahmasebi S; Baranton S; Coutanceau C; Jerkiewicz G; Beauchemin D Anal Chim Acta; 2020 Dec; 1139():36-41. PubMed ID: 33190707 [TBL] [Abstract][Full Text] [Related]
6. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Pace HE; Rogers NJ; Jarolimek C; Coleman VA; Higgins CP; Ranville JF Anal Chem; 2011 Dec; 83(24):9361-9. PubMed ID: 22074486 [TBL] [Abstract][Full Text] [Related]
7. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS. Loeschner K; Brabrand MS; Sloth JJ; Larsen EH Anal Bioanal Chem; 2014 Jun; 406(16):3845-51. PubMed ID: 24154927 [TBL] [Abstract][Full Text] [Related]
8. Detection and Quantification of Silver Nanoparticles at Environmentally Relevant Concentrations Using Asymmetric Flow Field-Flow Fractionation Online with Single Particle Inductively Coupled Plasma Mass Spectrometry. Huynh KA; Siska E; Heithmar E; Tadjiki S; Pergantis SA Anal Chem; 2016 May; 88(9):4909-16. PubMed ID: 27104795 [TBL] [Abstract][Full Text] [Related]
9. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Tuoriniemi J; Cornelis G; Hassellöv M Anal Chem; 2012 May; 84(9):3965-72. PubMed ID: 22483433 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry. Helsper JP; Peters RJ; van Bemmel ME; Rivera ZE; Wagner S; von der Kammer F; Tromp PC; Hofmann T; Weigel S Anal Bioanal Chem; 2016 Sep; 408(24):6679-91. PubMed ID: 27469116 [TBL] [Abstract][Full Text] [Related]
11. Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS. Fuchs J; Aghaei M; Schachel TD; Sperling M; Bogaerts A; Karst U Anal Chem; 2018 Sep; 90(17):10271-10278. PubMed ID: 30056707 [TBL] [Abstract][Full Text] [Related]
12. Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles. Liu J; Murphy KE; MacCuspie RI; Winchester MR Anal Chem; 2014 Apr; 86(7):3405-14. PubMed ID: 24575780 [TBL] [Abstract][Full Text] [Related]
13. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Tan J; Liu J; Li M; El Hadri H; Hackley VA; Zachariah MR Anal Chem; 2016 Sep; 88(17):8548-55. PubMed ID: 27479448 [TBL] [Abstract][Full Text] [Related]
14. Contribution to Accurate Spherical Gold Nanoparticle Size Determination by Single-Particle Inductively Coupled Mass Spectrometry: A Comparison with Small-Angle X-ray Scattering. Geertsen V; Barruet E; Gobeaux F; Lacour JL; Taché O Anal Chem; 2018 Aug; 90(16):9742-9750. PubMed ID: 30008211 [TBL] [Abstract][Full Text] [Related]
15. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. Yang Y; Long CL; Li HP; Wang Q; Yang ZG Sci Total Environ; 2016 Sep; 563-564():996-1007. PubMed ID: 26895948 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Pergantis SA; Jones-Lepp TL; Heithmar EM Anal Chem; 2012 Aug; 84(15):6454-62. PubMed ID: 22804728 [TBL] [Abstract][Full Text] [Related]
17. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration. Gschwind S; Aja Montes Mde L; Günther D Anal Bioanal Chem; 2015 May; 407(14):4035-44. PubMed ID: 25796528 [TBL] [Abstract][Full Text] [Related]
18. Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles. Liu J; Murphy KE; Winchester MR; Hackley VA Anal Bioanal Chem; 2017 Oct; 409(25):6027-6039. PubMed ID: 28815280 [TBL] [Abstract][Full Text] [Related]
19. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS. Benešová I; Dlabková K; Zelenák F; Vaculovič T; Kanický V; Preisler J Anal Chem; 2016 Mar; 88(5):2576-82. PubMed ID: 26859790 [TBL] [Abstract][Full Text] [Related]
20. Detection of nanoparticles by single-particle ICP-MS with complete transport efficiency through direct nebulization at few-microlitres-per-minute uptake rates. Tharaud M; Louvat P; Benedetti MF Anal Bioanal Chem; 2021 Jan; 413(3):923-933. PubMed ID: 33236223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]