BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27681905)

  • 1. The Opportunity for High-Performance Biomaterials from Methane.
    Strong PJ; Laycock B; Mahamud SN; Jensen PD; Lant PA; Tyson G; Pratt S
    Microorganisms; 2016 Feb; 4(1):. PubMed ID: 27681905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), using the type II methanotroph, Methylocystis sp. MJC1.
    Lee OK; Kang SG; Choi TR; Yang YH; Lee EY
    Bioresour Technol; 2023 Dec; 389():129853. PubMed ID: 37813313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs.
    Tran MH; Choi TR; Yang YH; Lee OK; Lee EY
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128687. PubMed ID: 38101655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of
    Kökpınar Ö; Altun M
    Prep Biochem Biotechnol; 2023; 53(5):532-541. PubMed ID: 36007876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methane and volatile fatty acids: properties, metabolic routes and current trend.
    Amabile C; Abate T; Muñoz R; Chianese S; Musmarra D
    Sci Total Environ; 2024 Jun; 927():172138. PubMed ID: 38582106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Characterisation of Poly(3-hydroxybutyrate-
    Mai J; Pratt S; Laycock B; Chan CM
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Myung J; Galega WM; Van Nostrand JD; Yuan T; Zhou J; Criddle CS
    Bioresour Technol; 2015 Dec; 198():811-8. PubMed ID: 26454368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source.
    Chen J; Li W; Zhang ZZ; Tan TW; Li ZJ
    Microb Cell Fact; 2018 Jul; 17(1):102. PubMed ID: 29970091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content.
    Cal AJ; Sikkema WD; Ponce MI; Franqui-Villanueva D; Riiff TJ; Orts WJ; Pieja AJ; Lee CC
    Int J Biol Macromol; 2016 Jun; 87():302-7. PubMed ID: 26920242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyhydroxybutyrate synthesis in Camelina: Towards coproduction of renewable feedstocks for bioplastics and fuels.
    Malik MR; Patterson N; Sharma N; Tang J; Burkitt C; Ji Y; Martino M; Hertig A; Schweitzer D; Peoples O; Snell KD
    Plant Biotechnol J; 2023 Dec; 21(12):2671-2682. PubMed ID: 37610031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives.
    Liu LY; Xie GJ; Xing DF; Liu BF; Ding J; Ren NQ
    Environ Sci Ecotechnol; 2020 Apr; 2():100029. PubMed ID: 36160923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of poly(3-hydroxybutyrateco-3-hydroxy-4-methylvalerate) by Strain Azotobacter chroococcum 7B.
    Bonartsev AP; Bonartseva GA; Myshkina VL; Voinova VV; Mahina TK; Zharkova II; Yakovlev SG; Zernov AL; Ivanova EV; Akoulina EA; Kuznetsova ES; Zhuikov VA; Alekseeva SG; Podgorskii VV; Bessonov IV; Kopitsyna MN; Morozov AS; Milanovskiy EY; Tyugay ZN; Bykova GS; Kirpichnikov MP; Shaitan KV
    Acta Naturae; 2016; 8(3):77-87. PubMed ID: 27795846
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Turco R; Santagata G; Corrado I; Pezzella C; Di Serio M
    Front Bioeng Biotechnol; 2020; 8():619266. PubMed ID: 33585417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermophilic production of poly(3-hydroxybutyrate-co-3-hydrovalerate) by a mixed methane-utilizing culture.
    Luangthongkam P; Laycock B; Evans P; Lant P; Pratt S
    N Biotechnol; 2019 Nov; 53():49-56. PubMed ID: 31276815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Industrial side streams as sustainable substrates for microbial production of poly(3-hydroxybutyrate) (PHB).
    Vlaeminck E; Uitterhaegen E; Quataert K; Delmulle T; De Winter K; Soetaert WK
    World J Microbiol Biotechnol; 2022 Oct; 38(12):238. PubMed ID: 36260135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates.
    Myung J; Flanagan JCA; Waymouth RM; Criddle CS
    AMB Express; 2017 Dec; 7(1):118. PubMed ID: 28587442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techno-economic assessment of biopolymer production from methane and volatile fatty acids: effect of the reactor size and biomass concentration on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) selling price.
    Amabile C; Abate T; Muñoz R; Chianese S; Musmarra D
    Sci Total Environ; 2024 Jun; 929():172599. PubMed ID: 38657807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs.
    Myung J; Kim M; Pan M; Criddle CS; Tang SK
    Bioresour Technol; 2016 May; 207():302-7. PubMed ID: 26896714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications.
    Kaniuk Ł; Stachewicz U
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5339-5362. PubMed ID: 34649426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.