These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 2768202)

  • 1. L-arabinose metabolism in Herbaspirillum seropedicae.
    Mathias AL; Rigo LU; Funayama S; Pedrosa FO
    J Bacteriol; 1989 Sep; 171(9):5206-9. PubMed ID: 2768202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Herbaspirillum seropedicae expresses non-phosphorylative pathways for D-xylose catabolism.
    Malán AK; Tuleski T; Catalán AI; de Souza EM; Batista S
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7339-7352. PubMed ID: 34499201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel alpha-ketoglutaric semialdehyde dehydrogenase: evolutionary insight into an alternative pathway of bacterial L-arabinose metabolism.
    Watanabe S; Kodaki T; Makino K
    J Biol Chem; 2006 Sep; 281(39):28876-88. PubMed ID: 16835232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.
    Duncan MJ; Fraenkel DG
    J Bacteriol; 1979 Jan; 137(1):415-9. PubMed ID: 762018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. d-Ribose Catabolism in Archaea: Discovery of a Novel Oxidative Pathway in
    Johnsen U; Sutter JM; Reinhardt A; Pickl A; Wang R; Xiang H; Schönheit P
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31712277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution.
    Watanabe S; Yamada M; Ohtsu I; Makino K
    J Biol Chem; 2007 Mar; 282(9):6685-95. PubMed ID: 17202142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.
    Elsinghorst EA; Mortlock RP
    J Bacteriol; 1994 Dec; 176(23):7223-32. PubMed ID: 7961494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-arabinose metabolism in Azospirillum brasiliense.
    Novick NJ; Tyler ME
    J Bacteriol; 1982 Jan; 149(1):364-7. PubMed ID: 6798025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Arabinose 1-dehydrogenase: a novel enzyme involving in bacterial L-arabinose metabolism.
    Watanabe S; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2005; (49):309-10. PubMed ID: 17150757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel non-phosphorylative pathway of pentose metabolism from bacteria.
    Watanabe S; Fukumori F; Nishiwaki H; Sakurai Y; Tajima K; Watanabe Y
    Sci Rep; 2019 Jan; 9(1):155. PubMed ID: 30655589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.
    Laskoski K; Santos AR; Bonatto AC; Pedrosa FO; Souza EM; Huergo LF
    Arch Microbiol; 2016 May; 198(4):307-13. PubMed ID: 26802007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway.
    Richard P; Verho R; Putkonen M; Londesborough J; Penttilä M
    FEMS Yeast Res; 2003 Apr; 3(2):185-9. PubMed ID: 12702451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a milk plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3.
    Baldani JI; Pot B; Kirchhof G; Falsen E; Baldani VL; Olivares FL; Hoste B; Kersters K; Hartmann A; Gillis M; Döbereiner J
    Int J Syst Bacteriol; 1996 Jul; 46(3):802-10. PubMed ID: 8782693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary crystallographic analysis of L-2-keto-3-deoxyarabonate dehydratase, an enzyme involved in an alternative bacterial pathway of L-arabinose metabolism.
    Shimada N; Mikami B; Watanabe S; Makino K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 May; 63(Pt 5):393-5. PubMed ID: 17565178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential Genes for In Vitro Growth of the Endophyte Herbaspirillum seropedicae SmR1 as Revealed by Transposon Insertion Site Sequencing.
    Rosconi F; de Vries SP; Baig A; Fabiano E; Grant AJ
    Appl Environ Microbiol; 2016 Nov; 82(22):6664-6671. PubMed ID: 27590816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Arabinose transport and catabolism in yeast.
    Fonseca C; Romão R; Rodrigues de Sousa H; Hahn-Hägerdal B; Spencer-Martins I
    FEBS J; 2007 Jul; 274(14):3589-3600. PubMed ID: 17627668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the L-fucose-D-arabinose pathway enzymes.
    Elsinghorst EA; Mortlock RP
    J Bacteriol; 1988 Dec; 170(12):5423-32. PubMed ID: 3056899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-seq analyses reveal insights into the function of respiratory nitrate reductase of the diazotroph Herbaspirillum seropedicae.
    Bonato P; Batista MB; Camilios-Neto D; Pankievicz VC; Tadra-Sfeir MZ; Monteiro RA; Pedrosa FO; Souza EM; Chubatsu LS; Wassem R; Rigo LU
    Environ Microbiol; 2016 Sep; 18(8):2677-88. PubMed ID: 27322548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli.
    Sakakibara Y; Saha BC; Taylor P
    J Biosci Bioeng; 2009 May; 107(5):506-11. PubMed ID: 19393548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of Herbaspirillum seropedicae lipid-A and of two mutants defective to colonize maize roots.
    Serrato RV; Balsanelli E; Sassaki GL; Carlson RW; Muszynski A; Monteiro RA; Pedrosa FO; Souza EM; Iacomini M
    Int J Biol Macromol; 2012 Nov; 51(4):384-91. PubMed ID: 22676993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.