These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 27682604)
1. Xenopus laevis and Emerging Amphibian Pathogens in Chile. Soto-Azat C; Peñafiel-Ricaurte A; Price SJ; Sallaberry-Pincheira N; García MP; Alvarado-Rybak M; Cunningham AA Ecohealth; 2016 Dec; 13(4):775-783. PubMed ID: 27682604 [TBL] [Abstract][Full Text] [Related]
2. Is Peñafiel-Ricaurte A; Price SJ; Leung WTM; Alvarado-Rybak M; Espinoza-Zambrano A; Valdivia C; Cunningham AA; Azat C PeerJ; 2023; 11():e14497. PubMed ID: 36874973 [TBL] [Abstract][Full Text] [Related]
3. Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile. Valenzuela-Sánchez A; O'Hanlon SJ; Alvarado-Rybak M; Uribe-Rivera DE; Cunningham AA; Fisher MC; Soto-Azat C Transbound Emerg Dis; 2018 Apr; 65(2):309-314. PubMed ID: 29205924 [TBL] [Abstract][Full Text] [Related]
4. First parasitological study of the African clawed frog (Xenopus laevis, Amphibia) in Chile. Castillo C; Lobos G; González-Acuña D; Moreno L; González CE; Landaeta-Aqueveque C Rev Bras Parasitol Vet; 2017; 26(2):243-247. PubMed ID: 28746452 [TBL] [Abstract][Full Text] [Related]
5. Using amphibians in laboratory studies: precautions against the emerging infectious disease chytridiomycosis. Schmeller DS; Loyau A; Dejean T; Miaud C Lab Anim; 2011 Jan; 45(1):25-30. PubMed ID: 21075827 [TBL] [Abstract][Full Text] [Related]
6. Patterns of amphibian infection prevalence across wetlands on the Savannah River Site, South Carolina, USA. Love CN; Winzeler ME; Beasley R; Scott DE; Nunziata SO; Lance SL Dis Aquat Organ; 2016 Aug; 121(1):1-14. PubMed ID: 27596855 [TBL] [Abstract][Full Text] [Related]
7. Infectious disease threats to amphibians in Greece: new localities positive for Batrachochytrium dendrobatidis. Strachinis I; Marschang RE; Lymberakis P; Karagianni KM; Azmanis P Dis Aquat Organ; 2022 Dec; 152():127-138. PubMed ID: 36519684 [TBL] [Abstract][Full Text] [Related]
8. Invasive African clawed frogs in California: A reservoir for or predator against the chytrid fungus? Wilson EA; Briggs CJ; Dudley TL PLoS One; 2018; 13(2):e0191537. PubMed ID: 29444096 [TBL] [Abstract][Full Text] [Related]
9. Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus. Bacigalupe LD; Soto-Azat C; García-Vera C; Barría-Oyarzo I; Rezende EL Glob Chang Biol; 2017 Sep; 23(9):3543-3553. PubMed ID: 28055125 [TBL] [Abstract][Full Text] [Related]
10. Factors influencing detection and co-detection of Ranavirus and Batrachochytrium dendrobatidis in Midwestern North American anuran populations. Talbott K; Wolf TM; Sebastian P; Abraham M; Bueno I; McLaughlin M; Harris T; Thompson R; Pessier AP; Travis D Dis Aquat Organ; 2018 May; 128(2):93-103. PubMed ID: 29733024 [TBL] [Abstract][Full Text] [Related]
11. Reservoir-host amplification of disease impact in an endangered amphibian. Scheele BC; Hunter DA; Brannelly LA; Skerratt LF; Driscoll DA Conserv Biol; 2017 Jun; 31(3):592-600. PubMed ID: 27594575 [TBL] [Abstract][Full Text] [Related]
12. Prominent amphibian (Xenopus laevis) tadpole type III interferon response to the frog virus 3 ranavirus. Grayfer L; De Jesús Andino F; Robert J J Virol; 2015 May; 89(9):5072-82. PubMed ID: 25717104 [TBL] [Abstract][Full Text] [Related]
13. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Ramsey JP; Reinert LK; Harper LK; Woodhams DC; Rollins-Smith LA Infect Immun; 2010 Sep; 78(9):3981-92. PubMed ID: 20584973 [TBL] [Abstract][Full Text] [Related]
14. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade. Kolby JE; Smith KM; Berger L; Karesh WB; Preston A; Pessier AP; Skerratt LF PLoS One; 2014; 9(3):e90750. PubMed ID: 24599268 [TBL] [Abstract][Full Text] [Related]
15. Multi-year dynamics of ranavirus, chytridiomycosis, and co-infections in a temperate host assemblage of amphibians. Olori JC; Netzband R; McKean N; Lowery J; Parsons K; Windstam ST Dis Aquat Organ; 2018 Sep; 130(3):187-197. PubMed ID: 30259871 [TBL] [Abstract][Full Text] [Related]
16. The amphibian (Xenopus laevis) type I interferon response to frog virus 3: new insight into ranavirus pathogenicity. Grayfer L; De Jesús Andino F; Robert J J Virol; 2014 May; 88(10):5766-77. PubMed ID: 24623410 [TBL] [Abstract][Full Text] [Related]
17. Amphibian ( Hauser KA; Singer JC; Hossainey MRH; Moore TE; Wendel ES; Yaparla A; Kalia N; Grayfer L Front Immunol; 2021; 12():737403. PubMed ID: 34489981 [TBL] [Abstract][Full Text] [Related]
18. A de novo Assembly of the Common Frog (Rana temporaria) Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis. Price SJ; Garner TW; Balloux F; Ruis C; Paszkiewicz KH; Moore K; Griffiths AG PLoS One; 2015; 10(6):e0130500. PubMed ID: 26111016 [TBL] [Abstract][Full Text] [Related]
19. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): an assessment. Schloegel LM; Daszak P; Cunningham AA; Speare R; Hill B Dis Aquat Organ; 2010 Nov; 92(2-3):101-8. PubMed ID: 21268971 [TBL] [Abstract][Full Text] [Related]
20. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar. Kolby JE; Smith KM; Ramirez SD; Rabemananjara F; Pessier AP; Brunner JL; Goldberg CS; Berger L; Skerratt LF PLoS One; 2015; 10(6):e0125330. PubMed ID: 26083349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]