These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 27682717)
1. Bis-Michael Acceptors as Novel Probes to Study the Keap1/Nrf2/ARE Pathway. Deny LJ; Traboulsi H; Cantin AM; Marsault É; Richter MV; Bélanger G J Med Chem; 2016 Oct; 59(20):9431-9442. PubMed ID: 27682717 [TBL] [Abstract][Full Text] [Related]
2. Characterization of novel small-molecule NRF2 activators: Structural and biochemical validation of stereospecific KEAP1 binding. Huerta C; Jiang X; Trevino I; Bender CF; Ferguson DA; Probst B; Swinger KK; Stoll VS; Thomas PJ; Dulubova I; Visnick M; Wigley WC Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2537-2552. PubMed ID: 27474998 [TBL] [Abstract][Full Text] [Related]
3. Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 protein-protein interaction inhibitor with high cell potency. Lu MC; Jiao Q; Liu T; Tan SJ; Zhou HS; You QD; Jiang ZY Eur J Med Chem; 2018 Jan; 143():1578-1589. PubMed ID: 29117896 [TBL] [Abstract][Full Text] [Related]
4. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166 [TBL] [Abstract][Full Text] [Related]
5. The Keap1/Nrf2-ARE Pathway as a Pharmacological Target for Chalcones. de Freitas Silva M; Pruccoli L; Morroni F; Sita G; Seghetti F; Viegas C; Tarozzi A Molecules; 2018 Jul; 23(7):. PubMed ID: 30037040 [TBL] [Abstract][Full Text] [Related]
6. Monoacidic Inhibitors of the Kelch-like ECH-Associated Protein 1: Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction with High Cell Potency Identified by Fragment-Based Discovery. Davies TG; Wixted WE; Coyle JE; Griffiths-Jones C; Hearn K; McMenamin R; Norton D; Rich SJ; Richardson C; Saxty G; Willems HM; Woolford AJ; Cottom JE; Kou JP; Yonchuk JG; Feldser HG; Sanchez Y; Foley JP; Bolognese BJ; Logan G; Podolin PL; Yan H; Callahan JF; Heightman TD; Kerns JK J Med Chem; 2016 Apr; 59(8):3991-4006. PubMed ID: 27031670 [TBL] [Abstract][Full Text] [Related]
7. Drug-Repositioning Screening for Keap1-Nrf2 Binding Inhibitors using Fluorescence Correlation Spectroscopy. Yoshizaki Y; Mori T; Ishigami-Yuasa M; Kikuchi E; Takahashi D; Zeniya M; Nomura N; Mori Y; Araki Y; Ando F; Mandai S; Kasagi Y; Arai Y; Sasaki E; Yoshida S; Kagechika H; Rai T; Uchida S; Sohara E Sci Rep; 2017 Jun; 7(1):3945. PubMed ID: 28638054 [TBL] [Abstract][Full Text] [Related]
9. Novel diterpenoid-type activators of the Keap1/Nrf2/ARE signaling pathway and their regulation of redox homeostasis. Li AL; Shen T; Wang T; Zhou MX; Wang B; Song JT; Zhang PL; Wang XL; Ren DM; Lou HX; Wang XN Free Radic Biol Med; 2019 Sep; 141():21-33. PubMed ID: 31167117 [TBL] [Abstract][Full Text] [Related]
10. Discovery of Keap1-Nrf2 small-molecule inhibitors from phytochemicals based on molecular docking. Li M; Huang W; Jie F; Wang M; Zhong Y; Chen Q; Lu B Food Chem Toxicol; 2019 Nov; 133():110758. PubMed ID: 31412289 [TBL] [Abstract][Full Text] [Related]
11. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of miR-200a protects cardiomyocytes against hypoxia-induced apoptosis by modulating the kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling axis. Sun X; Zuo H; Liu C; Yang Y Int J Mol Med; 2016 Oct; 38(4):1303-11. PubMed ID: 27573160 [TBL] [Abstract][Full Text] [Related]
13. Polysaccharide from Ostrea rivularis attenuates reproductive oxidative stress damage via activating Keap1-Nrf2/ARE pathway. Li S; Song Z; Liu T; Liang J; Yuan J; Xu Z; Sun Z; Lai X; Xiong Q; Zhang D Carbohydr Polym; 2018 Apr; 186():321-331. PubMed ID: 29455993 [TBL] [Abstract][Full Text] [Related]
14. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. Suzuki T; Yamamoto M J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501 [TBL] [Abstract][Full Text] [Related]
15. A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2. Qiu L; Wang M; Zhu Y; Xiang Y; Zhang Y Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042301 [TBL] [Abstract][Full Text] [Related]
16. Screening of natural compounds as activators of the keap1-nrf2 pathway. Wu KC; McDonald PR; Liu J; Klaassen CD Planta Med; 2014 Jan; 80(1):97-104. PubMed ID: 24310212 [TBL] [Abstract][Full Text] [Related]
17. Identification of novel indole derivatives acting as inhibitors of the Keap1-Nrf2 interaction. Cosimelli B; Greco G; Laneri S; Novellino E; Sacchi A; Amendola G; Cosconati S; Bortolozzi R; Viola G J Enzyme Inhib Med Chem; 2019 Dec; 34(1):1152-1157. PubMed ID: 31179771 [TBL] [Abstract][Full Text] [Related]
18. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Galiè M; Costanzo M; Nodari A; Boschi F; Calderan L; Mannucci S; Covi V; Tabaracci G; Malatesta M Free Radic Biol Med; 2018 Aug; 124():114-121. PubMed ID: 29864481 [TBL] [Abstract][Full Text] [Related]
19. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways. Gan FF; Ling H; Ang X; Reddy SA; Lee SS; Yang H; Tan SH; Hayes JD; Chui WK; Chew EH Toxicol Appl Pharmacol; 2013 Nov; 272(3):852-62. PubMed ID: 23899529 [TBL] [Abstract][Full Text] [Related]
20. Rare and common genetic variations in the Keap1/Nrf2 antioxidant response pathway impact thyroglobulin gene expression and circulating levels, respectively. Matana A; Ziros PG; Chartoumpekis DV; Renaud CO; Polašek O; Hayward C; Zemunik T; Sykiotis GP Biochem Pharmacol; 2020 Mar; 173():113605. PubMed ID: 31421134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]