These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27682992)

  • 1. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap.
    Bernardi MP; Milovich D; Francoeur M
    Nat Commun; 2016 Sep; 7():12900. PubMed ID: 27682992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A near-field radiative heat transfer device.
    DeSutter J; Tang L; Francoeur M
    Nat Nanotechnol; 2019 Aug; 14(8):751-755. PubMed ID: 31263192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corner- and edge-mode enhancement of near-field radiative heat transfer.
    Tang L; Corrêa LM; Francoeur M; Dames C
    Nature; 2024 May; 629(8010):67-73. PubMed ID: 38632409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement and Saturation of Near-Field Radiative Heat Transfer in Nanogaps between Metallic Surfaces.
    Rincón-García L; Thompson D; Mittapally R; Agraït N; Meyhofer E; Reddy P
    Phys Rev Lett; 2022 Sep; 129(14):145901. PubMed ID: 36240403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision Measurement of Phonon-Polaritonic Near-Field Energy Transfer between Macroscale Planar Structures Under Large Thermal Gradients.
    Ghashami M; Geng H; Kim T; Iacopino N; Cho SK; Park K
    Phys Rev Lett; 2018 Apr; 120(17):175901. PubMed ID: 29756825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit.
    Thompson D; Zhu L; Mittapally R; Sadat S; Xing Z; McArdle P; Qazilbash MM; Reddy P; Meyhofer E
    Nature; 2018 Sep; 561(7722):216-221. PubMed ID: 30177825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces.
    Fiorino A; Thompson D; Zhu L; Song B; Reddy P; Meyhofer E
    Nano Lett; 2018 Jun; 18(6):3711-3715. PubMed ID: 29701988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative heat transfer as a Landauer-Büttiker problem.
    Yap HH; Wang JS
    Phys Rev E; 2017 Jan; 95(1-1):012126. PubMed ID: 28208372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative heat transfer in the extreme near field.
    Kim K; Song B; Fernández-Hurtado V; Lee W; Jeong W; Cui L; Thompson D; Feist J; Reid MT; García-Vidal FJ; Cuevas JC; Meyhofer E; Reddy P
    Nature; 2015 Dec; 528(7582):387-91. PubMed ID: 26641312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanophotonic Heat Exchanger for Enhanced Near-Field Radiative Heat Transfer.
    Tsurimaki Y; Benzaouia M; Fan S
    Nano Lett; 2024 Apr; 24(15):4521-4527. PubMed ID: 38565218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps.
    Song B; Thompson D; Fiorino A; Ganjeh Y; Reddy P; Meyhofer E
    Nat Nanotechnol; 2016 Jun; 11(6):509-514. PubMed ID: 26950244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field radiative heat transfer between macroscopic planar surfaces.
    Ottens RS; Quetschke V; Wise S; Alemi AA; Lundock R; Mueller G; Reitze DH; Tanner DB; Whiting BF
    Phys Rev Lett; 2011 Jul; 107(1):014301. PubMed ID: 21797544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.
    Ito K; Nishikawa K; Miura A; Toshiyoshi H; Iizuka H
    Nano Lett; 2017 Jul; 17(7):4347-4353. PubMed ID: 28594564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant heat transfer in the crossover regime between conduction and radiation.
    Kloppstech K; Könne N; Biehs SA; Rodriguez AW; Worbes L; Hellmann D; Kittel A
    Nat Commun; 2017 Feb; 8():. PubMed ID: 28198369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale radiative thermal switching via multi-body effects.
    Thompson D; Zhu L; Meyhofer E; Reddy P
    Nat Nanotechnol; 2020 Feb; 15(2):99-104. PubMed ID: 31873289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence of vector spherical wave expansion method applied to near-field radiative transfer.
    Sasihithlu K; Narayanaswamy A
    Opt Express; 2011 Jul; 19 Suppl 4():A772-85. PubMed ID: 21747546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant near-field radiative heat transfer between ultrathin metallic films.
    Wang L; Bie M; Cai W; Ge L; Ji Z; Jia Y; Gong K; Zhang X; Wang J; Xu J
    Opt Express; 2019 Dec; 27(25):36790-36798. PubMed ID: 31873451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong near-field enhancement of radiative heat transfer between metallic surfaces.
    Kralik T; Hanzelka P; Zobac M; Musilova V; Fort T; Horak M
    Phys Rev Lett; 2012 Nov; 109(22):224302. PubMed ID: 23368126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures.
    Yan S; Luan Y; Lim JW; Mittapally R; Reihani A; Wang Z; Tsurimaki Y; Fan S; Reddy P; Meyhofer E
    Phys Rev Lett; 2023 Nov; 131(19):196302. PubMed ID: 38000410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogenic apparatus for study of near-field heat transfer.
    Kralik T; Hanzelka P; Musilova V; Srnka A; Zobac M
    Rev Sci Instrum; 2011 May; 82(5):055106. PubMed ID: 21639537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.