These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Manipulating Luminescence of Light Emitters by Photonic Crystals. Wu S; Xia H; Xu J; Sun X; Liu X Adv Mater; 2018 Nov; 30(47):e1803362. PubMed ID: 30251274 [TBL] [Abstract][Full Text] [Related]
4. Microscopies Enabled by Photonic Metamaterials. Xiong Y; Li N; Che C; Wang W; Barya P; Liu W; Liu L; Wang X; Wu S; Hu H; Cunningham BT Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161831 [TBL] [Abstract][Full Text] [Related]
6. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Makhonin MN; Dixon JE; Coles RJ; Royall B; Luxmoore IJ; Clarke E; Hugues M; Skolnick MS; Fox AM Nano Lett; 2014 Dec; 14(12):6997-7002. PubMed ID: 25381734 [TBL] [Abstract][Full Text] [Related]
7. Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide. Sokhoyan R; Atwater HA Opt Express; 2013 Dec; 21(26):32279-90. PubMed ID: 24514821 [TBL] [Abstract][Full Text] [Related]
8. Independent Electrical Control of Two Quantum Dots Coupled through a Photonic-Crystal Waveguide. Chu XL; Papon C; Bart N; Wieck AD; Ludwig A; Midolo L; Rotenberg N; Lodahl P Phys Rev Lett; 2023 Jul; 131(3):033606. PubMed ID: 37540854 [TBL] [Abstract][Full Text] [Related]
9. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594 [TBL] [Abstract][Full Text] [Related]
10. Polarization-Dependent Purcell Enhancement on a Two-Dimensional h-BN/WS Du B; Li Y; Jiang M; Zhang H; Wu L; Wen W; Liu Z; Fang Z; Yu T Nano Lett; 2022 Feb; 22(4):1649-1655. PubMed ID: 35107290 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous emission dynamics in an omnidirectional waveguide made of photonic crystals. Huang CH; Cheng SC; Wu JN; Hsieh WF J Phys Condens Matter; 2011 Jun; 23(22):225301. PubMed ID: 21572225 [TBL] [Abstract][Full Text] [Related]
12. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Arcari M; Söllner I; Javadi A; Lindskov Hansen S; Mahmoodian S; Liu J; Thyrrestrup H; Lee EH; Song JD; Stobbe S; Lodahl P Phys Rev Lett; 2014 Aug; 113(9):093603. PubMed ID: 25215983 [TBL] [Abstract][Full Text] [Related]
13. Narrow-linewidth carbon nanotube emission in silicon hollow-core photonic crystal cavity. Hoang THC; Durán-Valdeiglesias E; Alonso-Ramos C; Serna S; Zhang W; Balestrieri M; Keita AS; Caselli N; Biccari F; Le Roux X; Filoramo A; Gurioli M; Vivien L; Cassan E Opt Lett; 2017 Jun; 42(11):2228-2231. PubMed ID: 28569888 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity. Zhu G; Liao Q Opt Express; 2018 Nov; 26(24):31391-31401. PubMed ID: 30650725 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity enhancement through overlapping simultaneously excited Fano resonance modes of metallic-photonic-crystal sensors. Zhang J; Zhang X; Su X; Lu Y; Feng S; Wang L Opt Express; 2014 Feb; 22(3):3296-305. PubMed ID: 24663620 [TBL] [Abstract][Full Text] [Related]
16. Integration of Single-Photon Emitters in 2D Materials with Plasmonic Waveguides at Room Temperature. Jeong KY; Lee SW; Choi JH; So JP; Park HG Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32854316 [TBL] [Abstract][Full Text] [Related]
17. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride. Fröch JE; Li C; Chen Y; Toth M; Kianinia M; Kim S; Aharonovich I Small; 2022 Jan; 18(2):e2104805. PubMed ID: 34837313 [TBL] [Abstract][Full Text] [Related]
18. Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement. Caligiuri V; Palei M; Imran M; Manna L; Krahne R ACS Photonics; 2018 Jun; 5(6):2287-2294. PubMed ID: 31867410 [TBL] [Abstract][Full Text] [Related]
19. Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission. Yadav R; Pal S; Jana S; Roy S; Debnath K; Ray SK; Brundavanam MM; Bhaktha B N S Phys Chem Chem Phys; 2023 Oct; 25(41):28336-28349. PubMed ID: 37840472 [TBL] [Abstract][Full Text] [Related]
20. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials. Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]