These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre. Beaudou B; Couny F; Wang YY; Light PS; Wheeler NV; Gérôme F; Benabid F Opt Express; 2010 Jun; 18(12):12381-90. PubMed ID: 20588364 [TBL] [Abstract][Full Text] [Related]
28. Watt-level, mid-infrared output from a BaWO(4) external-cavity Raman laser at 2.6 μm. Kuzucu O Opt Lett; 2015 Nov; 40(21):5078-81. PubMed ID: 26512523 [TBL] [Abstract][Full Text] [Related]
29. GaSb-based mid infrared photonic crystal surface emitting lasers. Pan CH; Lin CH; Chang TY; Lu TC; Lee CP Opt Express; 2015 May; 23(9):11741-7. PubMed ID: 25969264 [TBL] [Abstract][Full Text] [Related]
30. Partially coherent fluctuating sources that produce the same optical force as a laser beam. Auñón JM; Nieto-Vesperinas M Opt Lett; 2013 Aug; 38(15):2869-72. PubMed ID: 23903166 [TBL] [Abstract][Full Text] [Related]
31. Dually modulated photonic crystal lasers for wide-range flash illumination. Sakata R; Zoysa M; Yoshikawa M; Inoue T; Ishizaki K; Gelleta J; Hatsuda R; Noda S Opt Express; 2022 Jul; 30(15):26043-26056. PubMed ID: 36236802 [TBL] [Abstract][Full Text] [Related]
32. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Sakata R; Ishizaki K; De Zoysa M; Fukuhara S; Inoue T; Tanaka Y; Iwata K; Hatsuda R; Yoshida M; Gelleta J; Noda S Nat Commun; 2020 Jul; 11(1):3487. PubMed ID: 32681086 [TBL] [Abstract][Full Text] [Related]
33. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime. Wen X; Han Y; Bai J; He J; Wang Y; Yang B; Wang J Opt Express; 2014 Dec; 22(26):32293-300. PubMed ID: 25607194 [TBL] [Abstract][Full Text] [Related]
34. Using the spatial light modulator as a binary optical element: application to spatial beam shaping for high-power lasers. Li S; Ding L; Du P; Lu Z; Wang Y; Zhou L; Yan X Appl Opt; 2018 Aug; 57(24):7060-7064. PubMed ID: 30129599 [TBL] [Abstract][Full Text] [Related]
35. High-Q photonic nanocavity in a two-dimensional photonic crystal. Akahane Y; Asano T; Song BS; Noda S Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465 [TBL] [Abstract][Full Text] [Related]
36. Effect of interaction between the internal cavity and external cavity on beam properties in a spectrally beam combined system. Wu Z; Ito T; Akiyama H; Zhang B J Opt Soc Am A Opt Image Sci Vis; 2018 May; 35(5):772-778. PubMed ID: 29726482 [TBL] [Abstract][Full Text] [Related]
37. Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity. Peng Q; Sun Z; Chen Y; Guo L; Bo Y; Yang X; Xu Z Opt Lett; 2005 Jun; 30(12):1485-7. PubMed ID: 16007782 [TBL] [Abstract][Full Text] [Related]
38. Highly efficient 400 W near-fundamental-mode green thin-disk laser. Piehler S; Dietrich T; Rumpel M; Graf T; Ahmed MA Opt Lett; 2016 Jan; 41(1):171-4. PubMed ID: 26696186 [TBL] [Abstract][Full Text] [Related]
39. Compact stacking of diode lasers for pulsed light sources of high brightness. Alahautala T; Lassila E; Hernberg R Appl Opt; 2004 Jul; 43(21):4232-6. PubMed ID: 15291069 [TBL] [Abstract][Full Text] [Related]
40. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation. Chi M; Jensen OB; Erbert G; Sumpf B; Petersen PM Appl Opt; 2011 Jan; 50(1):90-4. PubMed ID: 21221165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]