These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27683540)

  • 1. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System.
    Mikaitis M; Pineda García G; Knight JC; Furber SB
    Front Neurosci; 2018; 12():105. PubMed ID: 29535600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum.
    Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O
    Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for plasticity implementation on the SpiNNaker neural architecture.
    Galluppi F; Lagorce X; Stromatias E; Pfeiffer M; Plana LA; Furber SB; Benosman RB
    Front Neurosci; 2014; 8():429. PubMed ID: 25653580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time cortical simulation on neuromorphic hardware.
    Rhodes O; Peres L; Rowley AGD; Gait A; Plana LA; Brenninkmeijer C; Furber SB
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190160. PubMed ID: 31865885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware.
    Rostami A; Vogginger B; Yan Y; Mayr CG
    Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Plasticity on the SpiNNaker Many-Core Neuromorphic System.
    Bogdan PA; Rowley AGD; Rhodes O; Furber SB
    Front Neurosci; 2018; 12():434. PubMed ID: 30034320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine.
    Sen-Bhattacharya B; Serrano-Gotarredona T; Balassa L; Bhattacharya A; Stokes AB; Rowley A; Sugiarto I; Furber S
    Front Neurosci; 2017; 11():454. PubMed ID: 28848380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallelization of Neural Processing on Neuromorphic Hardware.
    Peres L; Rhodes O
    Front Neurosci; 2022; 16():867027. PubMed ID: 35620669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker.
    Rhodes O; Bogdan PA; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Mikaitis M; Plana LA; Rowley AGD; Stokes AB; Furber SB
    Front Neurosci; 2018; 12():816. PubMed ID: 30524220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpiNNTools: The Execution Engine for the SpiNNaker Platform.
    Rowley AGD; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Plana LA; Rhodes O; Stokes AB; Furber SB
    Front Neurosci; 2019; 13():231. PubMed ID: 30971873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the millisecond barrier on SpiNNaker: implementing asynchronous event-based plastic models with microsecond resolution.
    Lagorce X; Stromatias E; Galluppi F; Plana LA; Liu SC; Furber SB; Benosman RB
    Front Neurosci; 2015; 9():206. PubMed ID: 26106288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the computational footprint for real-time BCPNN learning.
    Vogginger B; Schüffny R; Lansner A; Cederström L; Partzsch J; Höppner S
    Front Neurosci; 2015; 9():2. PubMed ID: 25657618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.