These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 27683589)
1. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD Tsang F; Lin SJ Front Biol (Beijing); 2015 Aug; 10(4):333-357. PubMed ID: 27683589 [TBL] [Abstract][Full Text] [Related]
2. Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. Tsang F; James C; Kato M; Myers V; Ilyas I; Tsang M; Lin SJ J Biol Chem; 2015 May; 290(20):12753-64. PubMed ID: 25825491 [TBL] [Abstract][Full Text] [Related]
3. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. Kato M; Lin SJ DNA Repair (Amst); 2014 Nov; 23():49-58. PubMed ID: 25096760 [TBL] [Abstract][Full Text] [Related]
4. Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. Lu SP; Lin SJ J Biol Chem; 2011 Apr; 286(16):14271-81. PubMed ID: 21349851 [TBL] [Abstract][Full Text] [Related]
5. Cross-talk in NAD James Theoga Raj C; Lin SJ Curr Genet; 2019 Oct; 65(5):1113-1119. PubMed ID: 30993413 [TBL] [Abstract][Full Text] [Related]
6. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD Groth B; Lee YC; Huang CC; McDaniel M; Huang K; Lee LH; Lin SJ Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175754 [TBL] [Abstract][Full Text] [Related]
7. NAD Croft T; Venkatakrishnan P; Lin SJ Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32092906 [TBL] [Abstract][Full Text] [Related]
8. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Zhou X; Li J; Tang N; Xie H; Fan X; Chen H; Tang M; Xie X Microorganisms; 2021 Jul; 9(8):. PubMed ID: 34442636 [TBL] [Abstract][Full Text] [Related]
9. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. Deprez MA; Eskes E; Wilms T; Ludovico P; Winderickx J Microb Cell; 2018 Jan; 5(3):119-136. PubMed ID: 29487859 [TBL] [Abstract][Full Text] [Related]
10. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Kaeberlein M; Powers RW; Steffen KK; Westman EA; Hu D; Dang N; Kerr EO; Kirkland KT; Fields S; Kennedy BK Science; 2005 Nov; 310(5751):1193-6. PubMed ID: 16293764 [TBL] [Abstract][Full Text] [Related]
11. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Steyfkens F; Zhang Z; Van Zeebroeck G; Thevelein JM Front Pharmacol; 2018; 9():191. PubMed ID: 29662449 [TBL] [Abstract][Full Text] [Related]
12. NAD Groth B; Venkatakrishnan P; Lin SJ Front Mol Biosci; 2021; 8():686412. PubMed ID: 34095234 [TBL] [Abstract][Full Text] [Related]
13. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Lin SJ; Defossez PA; Guarente L Science; 2000 Sep; 289(5487):2126-8. PubMed ID: 11000115 [TBL] [Abstract][Full Text] [Related]
14. Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. Sampaio-Marques B; Burhans WC; Ludovico P Microb Cell; 2014 Apr; 1(4):118-127. PubMed ID: 28357232 [TBL] [Abstract][Full Text] [Related]
15. NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate. Tatsumi S; Katai K; Kaneko I; Segawa H; Miyamoto KI Pflugers Arch; 2019 Jan; 471(1):109-122. PubMed ID: 30218374 [TBL] [Abstract][Full Text] [Related]
17. The nutrient transceptor/PKA pathway functions independently of TOR and responds to leucine and Gcn2 in a TOR-independent manner. Conrad M; Kankipati HN; Kimpe M; Van Zeebroeck G; Zhang Z; Thevelein JM FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28810702 [TBL] [Abstract][Full Text] [Related]
18. Metabolic tracing reveals novel adaptations to skeletal muscle cell energy production pathways in response to NAD Oakey LA; Fletcher RS; Elhassan YS; Cartwright DM; Doig CL; Garten A; Thakker A; Maddocks ODK; Zhang T; Tennant DA; Ludwig C; Lavery GG Wellcome Open Res; 2018; 3():147. PubMed ID: 30607371 [No Abstract] [Full Text] [Related]
19. Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Zou K; Rouskin S; Dervishi K; McCormick MA; Sasikumar A; Deng C; Chen Z; Kaeberlein M; Brem RB; Polymenis M; Kennedy BK; Weissman JS; Zheng J; Ouyang Q; Li H Sci Adv; 2020 Aug; 6(32):eaba1306. PubMed ID: 32821821 [TBL] [Abstract][Full Text] [Related]
20. Role of Vallejo B; Peltier E; Garrigós V; Matallana E; Marullo P; Aranda A Front Bioeng Biotechnol; 2020; 8():853. PubMed ID: 32793580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]