These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 2768370)
1. Formic acid as a milder alternative to trifluoroacetic acid and phosphoric acid in two-dimensional peptide mapping. Poll DJ; Harding DR J Chromatogr; 1989 May; 469():231-9. PubMed ID: 2768370 [TBL] [Abstract][Full Text] [Related]
2. Perfluorinated acid alternatives to trifluoroacetic acid for reversed-phase high-performance liquid chromatography. Pearson JD; McCroskey MC J Chromatogr A; 1996 Oct; 746(2):277-81. PubMed ID: 8916558 [TBL] [Abstract][Full Text] [Related]
3. Peptide mapping with liquid chromatography using a basic mobile phase. Liu H; Xu B; Ray MK; Shahrokh Z J Chromatogr A; 2008 Nov; 1210(1):76-83. PubMed ID: 18838141 [TBL] [Abstract][Full Text] [Related]
4. Column-friendly reversed-phase high-performance liquid chromatography of peptides and proteins using formic acid with sodium chloride and dynamic column coating with crown ethers. Poll DJ; Harding DR J Chromatogr; 1991 Feb; 539(1):37-45. PubMed ID: 1826504 [TBL] [Abstract][Full Text] [Related]
5. Cyclic sample pooling using two-dimensional liquid chromatography system enhances coverage in shotgun proteomics. Kawashima Y; Satoh M; Saito T; Matsui T; Nomura F; Matsumoto H; Kodera Y Biomed Chromatogr; 2013 Jun; 27(6):691-4. PubMed ID: 23390086 [TBL] [Abstract][Full Text] [Related]
6. Optimization of reversed-phase peptide liquid chromatography ultraviolet mass spectrometry analyses using an automated blending methodology. Chakraborty AB; Berger SJ J Biomol Tech; 2005 Dec; 16(4):327-35. PubMed ID: 16522853 [TBL] [Abstract][Full Text] [Related]
7. Influence of trifluoroacetic acid on retention times of histidine-containing tryptic peptides in reverse phase HPLC. Acharya AS; Di Donato A; Manjula BN; Fischetti VA; Manning JM Int J Pept Protein Res; 1983 Jul; 22(1):78-82. PubMed ID: 6885251 [TBL] [Abstract][Full Text] [Related]
8. Solid phase peptide synthesis. A study on the effect of trifluoroacetic acid concentration on the removal of the tert-butyloxycarbonyl protecting group. Reid RE J Org Chem; 1976 Mar; 41(6):1027-31. PubMed ID: 1255284 [No Abstract] [Full Text] [Related]
9. A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. Tsugita A; Scheffler JJ Eur J Biochem; 1982 Jun; 124(3):585-8. PubMed ID: 7106109 [TBL] [Abstract][Full Text] [Related]
10. A volatile liquid chromatography system for nucleotides. Axelson JT; Bodley JW; Walseth TF Anal Biochem; 1981 Sep; 116(2):357-60. PubMed ID: 7316167 [No Abstract] [Full Text] [Related]
11. Two-step hard acid deprotection/cleavage procedure for solid phase peptide synthesis. Nomizu M; Inagaki Y; Yamashita T; Ohkubo A; Otaka A; Fujii N; Roller PP; Yajima H Int J Pept Protein Res; 1991 Feb; 37(2):145-52. PubMed ID: 2019476 [TBL] [Abstract][Full Text] [Related]
12. Alternative mobile phases for enhanced chromatographic selectivity and increased sensitivity in peptide separations. Young PM; Wheat TE Biotechniques; 1991 Feb; 10(2):228-35. PubMed ID: 1647805 [TBL] [Abstract][Full Text] [Related]
13. Determination of oxytetracycline in plasma from rainbow trout using high-performance liquid chromatography with ultraviolet detection. Iversen B; Aanesrud A; Kolstad AK; Rasmussen KE J Chromatogr; 1989 Aug; 493(1):217-21. PubMed ID: 2778015 [No Abstract] [Full Text] [Related]
14. Optimization of high-performance liquid chromatographic peptide separations with alternative mobile and stationary phases. Young PM; Wheat TE J Chromatogr; 1990 Jul; 512():273-81. PubMed ID: 2172265 [TBL] [Abstract][Full Text] [Related]
15. Formylated peptides from cyanogen bromide digests identified by fast atom bombardment mass spectrometry. Goodlett DR; Armstrong FB; Creech RJ; van Breemen RB Anal Biochem; 1990 Apr; 186(1):116-20. PubMed ID: 2356963 [TBL] [Abstract][Full Text] [Related]
16. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection. Tomlinson AJ; Chicz RM Rapid Commun Mass Spectrom; 2003; 17(9):909-16. PubMed ID: 12717763 [TBL] [Abstract][Full Text] [Related]
17. Integrated SDS removal and peptide separation by strong-cation exchange liquid chromatography for SDS-assisted shotgun proteome analysis. Sun D; Wang N; Li L J Proteome Res; 2012 Feb; 11(2):818-28. PubMed ID: 22214374 [TBL] [Abstract][Full Text] [Related]
18. Peptide maps at picomolar levels obtained by reversed-phase high-performance liquid chromatography and pre-column derivatization with phenyl isothiocyanate. Microsequencing of Phenylthiocarbamyl Peptides. Colilla FJ; Yadav SP; Brew K; Mendez E J Chromatogr; 1991 Jul; 548(1-2):303-10. PubMed ID: 1939428 [TBL] [Abstract][Full Text] [Related]
19. Optimum conditions for formation of aflatoxin M1-trifluoroacetic acid derivative. Stubblefield RD J Assoc Off Anal Chem; 1987; 70(6):1047-9. PubMed ID: 3125145 [TBL] [Abstract][Full Text] [Related]
20. Context-dependent effects on the hydrophilicity/hydrophobicity of side-chains during reversed-phase high-performance liquid chromatography: Implications for prediction of peptide retention behaviour. Mant CT; Hodges RS J Chromatogr A; 2006 Sep; 1125(2):211-9. PubMed ID: 16814308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]