These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27683726)

  • 1. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids.
    Agut B; Gamir J; Jaques JA; Flors V
    J Exp Bot; 2016 Oct; 67(19):5711-5723. PubMed ID: 27683726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae.
    Agut B; Gamir J; Jacas JA; Hurtado M; Flors V
    Pest Manag Sci; 2014 Nov; 70(11):1728-41. PubMed ID: 24375985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetranychus urticae-triggered responses promote genotype-dependent conspecific repellence or attractiveness in citrus.
    Agut B; Gamir J; Jaques JA; Flors V
    New Phytol; 2015 Aug; 207(3):790-804. PubMed ID: 25771705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycorrhiza-induced resistance in citrus against Tetranychus urticae is plant species dependent and inversely correlated to basal immunity.
    Manresa-Grao M; Pastor V; Sánchez-Bel P; Cruz A; Cerezo M; Jaques JA; Flors V
    Pest Manag Sci; 2024 Jul; 80(7):3553-3566. PubMed ID: 38446401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant-feeding may explain why the generalist predator Euseius stipulatus does better on less defended citrus plants but Tetranychus-specialists Neoseiulus californicus and Phytoseiulus persimilis do not.
    Cruz-Miralles J; Cabedo-López M; Guzzo M; Ibáñez-Gual V; Flors V; Jaques JA
    Exp Appl Acarol; 2021 Feb; 83(2):167-182. PubMed ID: 33483836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression profiling of two stress-inducible genes encoding for miraculin-like proteins in citrus plants under insect infestation or salinity stress.
    Podda A; Simili M; Del Carratore R; Mouhaya W; Morillon R; Maserti BE
    J Plant Physiol; 2014 Jan; 171(1):45-54. PubMed ID: 24001970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions.
    de Ollas C; Hernando B; Arbona V; Gómez-Cadenas A
    Physiol Plant; 2013 Mar; 147(3):296-306. PubMed ID: 22671923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zoophytophagous mites can trigger plant-genotype specific defensive responses affecting potential prey beyond predation: the case of Euseius stipulatus and Tetranychus urticae in citrus.
    Cruz-Miralles J; Cabedo-López M; Pérez-Hedo M; Flors V; Jaques JA
    Pest Manag Sci; 2019 Jul; 75(7):1962-1970. PubMed ID: 30578583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves.
    Maserti BE; Del Carratore R; Croce CM; Podda A; Migheli Q; Froelicher Y; Luro F; Morillon R; Ollitrault P; Talon M; Rossignol M
    J Plant Physiol; 2011 Mar; 168(4):392-402. PubMed ID: 20926159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycorrhizal Symbiosis Triggers Local Resistance in Citrus Plants Against Spider Mites.
    Manresa-Grao M; Pastor-Fernández J; Sanchez-Bel P; Jaques JA; Pastor V; Flors V
    Front Plant Sci; 2022; 13():867778. PubMed ID: 35845655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of methyl jasmonate (JA-Me) and B-glucosidase on induction of resistance mechanisms of strawberry against two-spotted spider mite (Tetranychus urticae Koch.).
    Warabieda W; Miszczak A; Olszak RW
    Commun Agric Appl Biol Sci; 2005; 70(4):829-36. PubMed ID: 16628924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.
    Schimmel BCJ; Ataide LMS; Chafi R; Villarroel CA; Alba JM; Schuurink RC; Kant MR
    New Phytol; 2017 Jun; 214(4):1688-1701. PubMed ID: 28386959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.
    Gols R; Roosjen M; Dijkman H; Dicke M
    J Chem Ecol; 2003 Dec; 29(12):2651-66. PubMed ID: 14969353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities.
    Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR
    BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stress responsive alternative splicing mechanism in Citrus clementina leaves.
    Del Carratore R; Magaldi E; Podda A; Beffy P; Migheli Q; Maserti BE
    J Plant Physiol; 2011 Jun; 168(9):952-9. PubMed ID: 21310505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signalling in systemic plant defence - roots put in hard graft.
    Groen SC
    J Exp Bot; 2016 Oct; 67(19):5585-5587. PubMed ID: 27738093
    [No Abstract]   [Full Text] [Related]  

  • 17. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production.
    Allario T; Brumos J; Colmenero-Flores JM; Iglesias DJ; Pina JA; Navarro L; Talon M; Ollitrault P; Morillon R
    Plant Cell Environ; 2013 Apr; 36(4):856-68. PubMed ID: 23050986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider-mite infestation in cucumber (Cucumis sativus).
    He J; Bouwmeester HJ; Dicke M; Kappers IF
    Plant Mol Biol; 2020 Jul; 103(4-5):489-505. PubMed ID: 32306368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences.
    Zhang NX; Messelink GJ; Alba JM; Schuurink RC; Kant MR; Janssen A
    Oecologia; 2018 Jan; 186(1):101-113. PubMed ID: 29124341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore.
    Pangesti N; Reichelt M; van de Mortel JE; Kapsomenou E; Gershenzon J; van Loon JJ; Dicke M; Pineda A
    J Chem Ecol; 2016 Dec; 42(12):1212-1225. PubMed ID: 27848154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.