These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27684050)

  • 1. Effect of feeder free poly(lactide-co-glycolide) scaffolds on morphology, proliferation, and pluripotency of mouse embryonic stem cells.
    Galuppo AG; Chagastelles PC; Gamba D; Iglesias DB; Sperling LE; Machado J; Petry JF; Wendorff J; Petzhold CL; Pranke P
    J Biomed Mater Res A; 2017 Feb; 105(2):424-432. PubMed ID: 27684050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells.
    Sperling LE; Reis KP; Pozzobon LG; Girardi CS; Pranke P
    J Biomed Mater Res A; 2017 May; 105(5):1333-1345. PubMed ID: 28120428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in suitable mechanical properties of three-dimensional, synthetic scaffolds for self-renewing mouse embryonic stem cells of different genetic backgrounds.
    Lee M; Ahn JI; Ahn JY; Yang WS; Hubbell JA; Lim JM; Lee ST
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2261-2268. PubMed ID: 27459401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F; Zhang YC; Zhou H; Guo YC; Su XX
    J Biomed Mater Res A; 2014 Mar; 102(3):760-8. PubMed ID: 23564567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of multiwalled carbon nanotubes on electrospun poly(lactide-co-glycolide)-based nanocomposite scaffolds on neural cells proliferation.
    Lv ZJ; Liu Y; Miao H; Leng ZQ; Guo JH; Liu J
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):934-943. PubMed ID: 26849161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel triblock co-polymer nanofibre system as an alternative support for embryonic stem cells growth and pluripotency.
    Perestrelo AR; Mouffouk F; da Costa AM; Belo JA
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E467-E476. PubMed ID: 24668905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold.
    Hashemi SM; Soudi S; Shabani I; Naderi M; Soleimani M
    Biomaterials; 2011 Oct; 32(30):7363-74. PubMed ID: 21762983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices.
    Sthanam LK; Barai A; Rastogi A; Mistari VK; Maria A; Kauthale R; Gatne M; Sen S
    Biomaterials; 2017 Mar; 119():9-22. PubMed ID: 27988407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation.
    Li CW; Pan WT; Ju JC; Wang GJ
    Biomed Mater; 2016 Apr; 11(2):025015. PubMed ID: 27068738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications.
    Cheng Q; Rutledge K; Jabbarzadeh E
    Ann Biomed Eng; 2013 May; 41(5):904-16. PubMed ID: 23283475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW
    Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds.
    Inanç B; Arslan YE; Seker S; Elçin AE; Elçin YM
    J Biomed Mater Res A; 2009 Jul; 90(1):186-95. PubMed ID: 18491392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide).
    Shen H; Hu X; Bei J; Wang S
    Biomaterials; 2008 May; 29(15):2388-99. PubMed ID: 18313747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroregeneration of Induced Pluripotent Stem Cells in Polyacrylamide-Chitosan Inverted Colloidal Crystal Scaffolds with Poly(lactide-co-glycolide) Nanoparticles and Transactivator of Transcription von Hippel-Lindau Peptide.
    Kuo YC; Chen CW
    Tissue Eng Part A; 2017 Apr; 23(7-8):263-274. PubMed ID: 28107800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of demineralized bone particle/poly(lactic-co-glycolic acid) scaffolds on the attachment and proliferation of mesenchymal stem cells.
    Han KS; Song JE; Kang SJ; Lee D; Khang G
    J Biomater Sci Polym Ed; 2015; 26(2):92-110. PubMed ID: 25431827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering.
    Haaparanta AM; Uppstu P; Hannula M; Ellä V; Rosling A; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():457-66. PubMed ID: 26249615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional macroporous graphene scaffolds for tissue engineering.
    Lalwani G; D'agati M; Gopalan A; Rao M; Schneller J; Sitharaman B
    J Biomed Mater Res A; 2017 Jan; 105(1):73-83. PubMed ID: 27529473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of PRPF4 regulates pluripotency, proliferation, and differentiation in mouse embryonic stem cells.
    Park S; Han SH; Kim HG; Jeong J; Choi M; Kim HY; Kim MG; Park JK; Han JE; Cho GJ; Kim MO; Ryoo ZY; Choi SK
    Cell Biochem Funct; 2019 Dec; 37(8):608-617. PubMed ID: 31502671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomimetic synthetic feeder layer supports the proliferation and self-renewal of mouse embryonic stem cells.
    López-Fagundo C; Livi LL; Ramchal T; Darling EM; Hoffman-Kim D
    Acta Biomater; 2016 Jul; 39():55-64. PubMed ID: 27142253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.