These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 27684445)
1. Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet-Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. Kim HI; Weon S; Kang H; Hagstrom AL; Kwon OS; Lee YS; Choi W; Kim JH Environ Sci Technol; 2016 Oct; 50(20):11184-11192. PubMed ID: 27684445 [TBL] [Abstract][Full Text] [Related]
2. Photonic crystal-assisted sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for the degradation of environmental organic pollutants. Cho H; Seo SE; Kwon OS; Kim HI J Hazard Mater; 2024 Sep; 477():135208. PubMed ID: 39067295 [TBL] [Abstract][Full Text] [Related]
3. Triplet-Triplet Annihilation Upconversion in Broadly Absorbing Layered Film Systems for Sub-Bandgap Photocatalysis. Hagstrom AL; Weon S; Choi W; Kim JH ACS Appl Mater Interfaces; 2019 Apr; 11(14):13304-13318. PubMed ID: 30933469 [TBL] [Abstract][Full Text] [Related]
4. Triplet-triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. Kwon OS; Kim JH; Cho JK; Kim JH ACS Appl Mater Interfaces; 2015 Jan; 7(1):318-25. PubMed ID: 25522373 [TBL] [Abstract][Full Text] [Related]
5. Efficient Photocatalysis of Composite Films Based on Plasmon-Enhanced Triplet-Triplet Annihilation. Fang J; Zhou C; Chen Y; Fang L; Wang W; Zhu C; Ni Y; Lu C ACS Appl Mater Interfaces; 2020 Jan; 12(1):717-726. PubMed ID: 31813218 [TBL] [Abstract][Full Text] [Related]
6. Triplet-Triplet Annihilation Upconversion for Photocatalytic Hydrogen Evolution. Yu T; Liu Y; Zeng Y; Chen J; Yang G; Li Y Chemistry; 2019 Dec; 25(71):16270-16276. PubMed ID: 31587399 [TBL] [Abstract][Full Text] [Related]
7. Encapsulated triplet-triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. Kim JH; Kim JH J Am Chem Soc; 2012 Oct; 134(42):17478-81. PubMed ID: 23062012 [TBL] [Abstract][Full Text] [Related]
8. Uncovering the Mechanisms of Triplet-Triplet Annihilation Upconversion Enhancement via Plasmonic Nanocavity Tuning. Bangle RE; Li H; Mikkelsen MH ACS Nano; 2023 Dec; 17(23):24022-24032. PubMed ID: 38014847 [TBL] [Abstract][Full Text] [Related]
9. Low-Energy Photons Dual Harvest for Photocatalytic Hydrogen Evolution: Bimodal Surface Plasma Resonance Related Synergism of Upconversion and Pyroelectricity. Fang J; Wei H; Chen Y; Dai B; Ni Y; Kou J; Lu C; Xu Z Small; 2023 May; 19(18):e2207467. PubMed ID: 36634976 [TBL] [Abstract][Full Text] [Related]
10. Highly Effective Near-Infrared Activating Triplet-Triplet Annihilation Upconversion for Photoredox Catalysis. Huang L; Wu W; Li Y; Huang K; Zeng L; Lin W; Han G J Am Chem Soc; 2020 Oct; 142(43):18460-18470. PubMed ID: 33074671 [TBL] [Abstract][Full Text] [Related]
11. Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting. Monguzzi A; Oertel A; Braga D; Riedinger A; Kim DK; Knüsel PN; Bianchi A; Mauri M; Simonutti R; Norris DJ; Meinardi F ACS Appl Mater Interfaces; 2017 Nov; 9(46):40180-40186. PubMed ID: 29083152 [TBL] [Abstract][Full Text] [Related]
13. Flexible and Micropatternable Triplet-Triplet Annihilation Upconversion Thin Films for Photonic Device Integration and Anticounterfeiting Applications. Hagstrom AL; Lee HL; Lee MS; Choe HS; Jung J; Park BG; Han WS; Ko JS; Kim JH; Kim JH ACS Appl Mater Interfaces; 2018 Mar; 10(10):8985-8992. PubMed ID: 29441781 [TBL] [Abstract][Full Text] [Related]
14. Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion. Nienhaus L; Wu M; Bulović V; Baldo MA; Bawendi MG Dalton Trans; 2018 Jul; 47(26):8509-8516. PubMed ID: 29493697 [TBL] [Abstract][Full Text] [Related]
15. Integrating a triplet-triplet annihilation up-conversion system to enhance dye-sensitized solar cell response to sub-bandgap light. Nattestad A; Cheng YY; MacQueen RW; Wallace GG; Schmidt TW J Vis Exp; 2014 Sep; (91):52028. PubMed ID: 25285452 [TBL] [Abstract][Full Text] [Related]
16. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Yanai N; Kimizuka N Acc Chem Res; 2017 Oct; 50(10):2487-2495. PubMed ID: 28930435 [TBL] [Abstract][Full Text] [Related]
17. Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection. Mahato P; Yanai N; Sindoro M; Granick S; Kimizuka N J Am Chem Soc; 2016 May; 138(20):6541-9. PubMed ID: 27163784 [TBL] [Abstract][Full Text] [Related]
18. Water-Dispersible Triplet-Triplet Annihilation Photon Upconversion Particle: Molecules Integrated in Hydrophobized Two-Dimensional Interlayer Space of Montmorillonite and Their Application for Photocatalysis in the Aqueous Phase. Kishimoto F; Wakihara T; Okubo T ACS Appl Mater Interfaces; 2020 Feb; 12(6):7021-7029. PubMed ID: 31970990 [TBL] [Abstract][Full Text] [Related]
19. Multifold Enhanced Photon Upconversion in a Composite Annihilator System Sensitized by Perovskite Nanocrystals. Chua XW; Dai L; Anaya M; Salway H; Ruggeri E; Bi P; Yang Z; Stranks SD; Yang L ACS Nano; 2024 Jun; 18(23):15229-15238. PubMed ID: 38820532 [TBL] [Abstract][Full Text] [Related]
20. Highly enhanced visible light water splitting of CdS by green to blue upconversion. Chandrasekaran S; Ngo YT; Sui L; Kim EJ; Dang DK; Chung JS; Hur SH Dalton Trans; 2017 Oct; 46(40):13912-13919. PubMed ID: 28972224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]