These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 27684524)
1. Predictive Model Development for Aviation Black Carbon Mass Emissions from Alternative and Conventional Fuels at Ground and Cruise. Abrahamson JP; Zelina J; Andac MG; Vander Wal RL Environ Sci Technol; 2016 Nov; 50(21):12048-12055. PubMed ID: 27684524 [TBL] [Abstract][Full Text] [Related]
2. Global civil aviation black carbon emissions. Stettler ME; Boies AM; Petzold A; Barrett SR Environ Sci Technol; 2013 Sep; 47(18):10397-404. PubMed ID: 23844612 [TBL] [Abstract][Full Text] [Related]
3. Gas Turbine Engine Nonvolatile Particulate Matter Mass Emissions: Correlation with Smoke Number for Conventional and Alternative Fuel Blends. Christie S; Lobo P; Lee D; Raper D Environ Sci Technol; 2017 Jan; 51(2):988-996. PubMed ID: 28055198 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Particle Pollution from Jetliners: from Smoke Visibility to Nanoparticle Counting. Durdina L; Brem BT; Setyan A; Siegerist F; Rindlisbacher T; Wang J Environ Sci Technol; 2017 Mar; 51(6):3534-3541. PubMed ID: 28230356 [TBL] [Abstract][Full Text] [Related]
5. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign. Schripp T; Anderson B; Crosbie EC; Moore RH; Herrmann F; Oßwald P; Wahl C; Kapernaum M; Köhler M; Le Clercq P; Rauch B; Eichler P; Mikoviny T; Wisthaler A Environ Sci Technol; 2018 Apr; 52(8):4969-4978. PubMed ID: 29601722 [TBL] [Abstract][Full Text] [Related]
6. An algorithm to estimate aircraft cruise black carbon emissions for use in developing a cruise emissions inventory. Peck J; Oluwole OO; Wong HW; Miake-Lye RC J Air Waste Manag Assoc; 2013 Mar; 63(3):367-75. PubMed ID: 23556245 [TBL] [Abstract][Full Text] [Related]
7. A convolutional neural network prediction model for aviation nitrogen oxides emissions throughout all flight phases. Chen L; Zhang Q; Zhu M; Li G; Chang L; Xu Z; Zhang H; Wang Y; Zheng Y; Zhong S; Pan K; Zhao Y; Gao M; Zhang B Sci Total Environ; 2024 Jun; 929():172432. PubMed ID: 38615768 [TBL] [Abstract][Full Text] [Related]
8. Predicting aviation non-volatile particulate matter emissions at cruise via convolutional neural network. Ge F; Yu Z; Li Y; Zhu M; Zhang B; Zhang Q; Harrison RM; Chen L Sci Total Environ; 2022 Dec; 850():158089. PubMed ID: 35985597 [TBL] [Abstract][Full Text] [Related]
9. Impacts of Alternative Fuels on Morphological and Nanostructural Characteristics of Soot Emissions from an Aviation Piston Engine. Chen L; Hu X; Wang J; Yu Y Environ Sci Technol; 2019 Apr; 53(8):4667-4674. PubMed ID: 30908027 [TBL] [Abstract][Full Text] [Related]
10. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels. Miracolo MA; Drozd GT; Jathar SH; Presto AA; Lipsky EM; Corporan E; Robinson AL Environ Sci Technol; 2012 Aug; 46(15):8493-501. PubMed ID: 22732009 [TBL] [Abstract][Full Text] [Related]
11. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine. Robinson MA; Olson MR; Liu ZG; Schauer JJ J Air Waste Manag Assoc; 2015 Jun; 65(6):759-66. PubMed ID: 25976489 [TBL] [Abstract][Full Text] [Related]
12. Ash-Decorated and Ash-Painted Soot from Residual and Distillate-Fuel Combustion in Four Marine Engines and One Aviation Engine. Gagné S; Couillard M; Gajdosechova Z; Momenimovahed A; Smallwood G; Mester Z; Thomson K; Lobo P; Corbin JC Environ Sci Technol; 2021 May; 55(10):6584-6593. PubMed ID: 33905233 [TBL] [Abstract][Full Text] [Related]
13. Comparison of measurement methods for the characterization of the black carbon emissions from a T63 turboshaft engine burning conventional and Fischer-Tropsch fuels. Kinsey JS; Corporan E; Pavlovic J; DeWitt M; Klingshirn C; Logan R J Air Waste Manag Assoc; 2019 May; 69(5):576-591. PubMed ID: 30526430 [TBL] [Abstract][Full Text] [Related]
14. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy. Liati A; Schreiber D; Alpert PA; Liao Y; Brem BT; Corral Arroyo P; Hu J; Jonsdottir HR; Ammann M; Dimopoulos Eggenschwiler P Environ Pollut; 2019 Apr; 247():658-667. PubMed ID: 30711821 [TBL] [Abstract][Full Text] [Related]
15. Assessing the Climate Trade-Offs of Gasoline Direct Injection Engines. Zimmerman N; Wang JM; Jeong CH; Wallace JS; Evans GJ Environ Sci Technol; 2016 Aug; 50(15):8385-92. PubMed ID: 27406325 [TBL] [Abstract][Full Text] [Related]
16. SCOPE11 Method for Estimating Aircraft Black Carbon Mass and Particle Number Emissions. Agarwal A; Speth RL; Fritz TM; Jacob SD; Rindlisbacher T; Iovinelli R; Owen B; Miake-Lye RC; Sabnis JS; Barrett SRH Environ Sci Technol; 2019 Feb; 53(3):1364-1373. PubMed ID: 30620574 [TBL] [Abstract][Full Text] [Related]
17. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon. Wang Y; Xing Z; Xu H; Du K Sci Total Environ; 2016 Dec; 572():1161-1165. PubMed ID: 27528482 [TBL] [Abstract][Full Text] [Related]
18. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels. Lobo P; Hagen DE; Whitefield PD Environ Sci Technol; 2011 Dec; 45(24):10744-9. PubMed ID: 22043875 [TBL] [Abstract][Full Text] [Related]
19. Toward Elimination of Soot Emissions from Jet Fuel Combustion. Kelesidis GA; Nagarkar A; Trivanovic U; Pratsinis SE Environ Sci Technol; 2023 Jul; 57(28):10276-10283. PubMed ID: 37406187 [TBL] [Abstract][Full Text] [Related]
20. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors. Wang Y; Xing Z; Zhao S; Zheng M; Mu C; Du K Sci Total Environ; 2016 Mar; 547():422-428. PubMed ID: 26799329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]