These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 27685000)
21. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant. Bose S; Chakrabarty S; Ghosh D J Phys Chem B; 2016 May; 120(19):4410-20. PubMed ID: 27116477 [TBL] [Abstract][Full Text] [Related]
22. QM/MM Studies on Photoisomerization Dynamics of Azobenzene Chromophore Tethered to a DNA Duplex: Local Unpaired Nucleobase Plays a Crucial Role. Wu D; Wang YT; Fang WH; Cui G; Thiel W Chem Asian J; 2018 Apr; 13(7):780-784. PubMed ID: 29446260 [TBL] [Abstract][Full Text] [Related]
23. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Huang H; Suslov NB; Li NS; Shelke SA; Evans ME; Koldobskaya Y; Rice PA; Piccirilli JA Nat Chem Biol; 2014 Aug; 10(8):686-91. PubMed ID: 24952597 [TBL] [Abstract][Full Text] [Related]
24. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores. Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809 [TBL] [Abstract][Full Text] [Related]
25. Molecular modelling of the pH influence in the geometry and the absorbance spectrum of near-infrared TagRFP675 fluorescent protein. Randino C; Gelabert R; Moreno M; Lluch JM; Piatkevich KD Phys Chem Chem Phys; 2015 Nov; 17(43):29363-73. PubMed ID: 26473582 [TBL] [Abstract][Full Text] [Related]
26. Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching. Tomasello G; Olaso-González G; Altoè P; Stenta M; Serrano-Andrés L; Merchán M; Orlandi G; Bottoni A; Garavelli M J Am Chem Soc; 2009 Apr; 131(14):5172-86. PubMed ID: 19309158 [TBL] [Abstract][Full Text] [Related]
27. Quantum refinement of protein structures: implementation and application to the red fluorescent protein DsRed.M1. Hsiao YW; Sanchez-Garcia E; Doerr M; Thiel W J Phys Chem B; 2010 Nov; 114(46):15413-23. PubMed ID: 20977248 [TBL] [Abstract][Full Text] [Related]
28. RNA mimics of green fluorescent protein. Paige JS; Wu KY; Jaffrey SR Science; 2011 Jul; 333(6042):642-6. PubMed ID: 21798953 [TBL] [Abstract][Full Text] [Related]
29. Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Yang JS; Huang GJ; Liu YH; Peng SM Chem Commun (Camb); 2008 Mar; (11):1344-6. PubMed ID: 18389128 [TBL] [Abstract][Full Text] [Related]
30. On the optical absorption of the anionic GFP chromophore in vacuum, solution, and protein. Petrone A; Caruso P; Tenuta S; Rega N Phys Chem Chem Phys; 2013 Dec; 15(47):20536-44. PubMed ID: 24177429 [TBL] [Abstract][Full Text] [Related]
31. Rational design and development of a universal baby spinach-based sensing platform for the detection of biomolecules. Ji D; Li Z; Kwok CK Analyst; 2019 Dec; 144(24):7173-7177. PubMed ID: 31750452 [TBL] [Abstract][Full Text] [Related]
32. Why does a para-amino group make the green fluorescent protein chromophore non-fluorescent: coherent intramolecular charge transfer reduces the Z/E-photoisomerization barrier. Chen YH; Sung R; Sung K Chem Commun (Camb); 2019 Aug; 55(61):8991-8994. PubMed ID: 31290874 [TBL] [Abstract][Full Text] [Related]
33. A diabatic three-state representation of photoisomerization in the green fluorescent protein chromophore. Olsen S; McKenzie RH J Chem Phys; 2009 May; 130(18):184302. PubMed ID: 19449916 [TBL] [Abstract][Full Text] [Related]
34. Plug-and-play fluorophores extend the spectral properties of Spinach. Song W; Strack RL; Svensen N; Jaffrey SR J Am Chem Soc; 2014 Jan; 136(4):1198-201. PubMed ID: 24393009 [TBL] [Abstract][Full Text] [Related]
35. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach. Ketterer S; Fuchs D; Weber W; Meier M Nucleic Acids Res; 2015 Oct; 43(19):9564-72. PubMed ID: 26400180 [TBL] [Abstract][Full Text] [Related]
36. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Warner KD; Chen MC; Song W; Strack RL; Thorn A; Jaffrey SR; Ferré-D'Amaré AR Nat Struct Mol Biol; 2014 Aug; 21(8):658-63. PubMed ID: 25026079 [TBL] [Abstract][Full Text] [Related]
37. The 559-to-600 nm shift observed in red fluorescent protein eqFP611 is attributed to cis-trans isomerization of the chromophore in an anionic protein pocket. Yan W; Xie D; Zeng J Phys Chem Chem Phys; 2009 Aug; 11(29):6042-50. PubMed ID: 19606312 [TBL] [Abstract][Full Text] [Related]
38. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR; Einterz CM; Knapp HM; Murray LP Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878 [TBL] [Abstract][Full Text] [Related]
39. Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission. Wu D; Guo WW; Liu XY; Cui G Chemphyschem; 2016 Aug; 17(15):2340-7. PubMed ID: 27128380 [TBL] [Abstract][Full Text] [Related]
40. Spinach RNA aptamer detects lead(II) with high selectivity. DasGupta S; Shelke SA; Li NS; Piccirilli JA Chem Commun (Camb); 2015 May; 51(43):9034-7. PubMed ID: 25940073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]