These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27685017)

  • 1. A Computational Efficient Method to Assess the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis.
    O'Rourke D; Martelli S; Bottema M; Taylor M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27685017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.
    Watson PJ; Fagan MJ; Dobson CA
    Proc Inst Mech Eng H; 2015 Jan; 229(1):9-19. PubMed ID: 25542612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.
    Xu C; Silder A; Zhang J; Hughes J; Unnikrishnan G; Reifman J; Rakesh V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27437640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bone density alterations on strain patterns in the pelvis: application of a finite element model.
    Leung AS; Gordon LM; Skrinskas T; Szwedowski T; Whyne CM
    Proc Inst Mech Eng H; 2009 Nov; 223(8):965-79. PubMed ID: 20092094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and experimental validation of a three-dimensional finite element model of the human scapula.
    Gupta S; van der Helm FC; Sterk JC; van Keulen F; Kaptein BL
    Proc Inst Mech Eng H; 2004; 218(2):127-42. PubMed ID: 15116900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a finite element model of the human metacarpal.
    Barker DS; Netherway DJ; Krishnan J; Hearn TC
    Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
    Cyganik Ł; Binkowski M; Kokot G; Rusin T; Popik P; Bolechała F; Nowak R; Wróbel Z; John A
    J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of optimization methodology and specimen-specific finite element models for investigating material properties of rat skull.
    Guan F; Han X; Mao H; Wagner C; Yeni YN; Yang KH
    Ann Biomed Eng; 2011 Jan; 39(1):85-95. PubMed ID: 20652748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA; Wilson LJ; Langton C; Epari D
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
    MacLeod AR; Rose H; Gill HS
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27618586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.