These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 27685136)
1. Spot scanning proton therapy minimizes neutron dose in the setting of radiation therapy administered during pregnancy. Wang X; Poenisch F; Sahoo N; Zhu RX; Lii M; Gillin MT; Li J; Grosshans D J Appl Clin Med Phys; 2016 Sep; 17(5):366-376. PubMed ID: 27685136 [TBL] [Abstract][Full Text] [Related]
2. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams. Zheng Y; Liu Y; Zeidan O; Schreuder AN; Keole S Med Phys; 2012 Jun; 39(6):3484-92. PubMed ID: 22755728 [TBL] [Abstract][Full Text] [Related]
3. Dose assessment for the fetus considering scattered and secondary radiation from photon and proton therapy when treating a brain tumor of the mother. Geng C; Moteabbed M; Seco J; Gao Y; Xu XG; Ramos-Méndez J; Faddegon B; Paganetti H Phys Med Biol; 2016 Jan; 61(2):683-95. PubMed ID: 26716718 [TBL] [Abstract][Full Text] [Related]
4. Secondary neutron doses for several beam configurations for proton therapy. Shin D; Yoon M; Kwak J; Shin J; Lee SB; Park SY; Park S; Kim DY; Cho KH Int J Radiat Oncol Biol Phys; 2009 May; 74(1):260-5. PubMed ID: 19362245 [TBL] [Abstract][Full Text] [Related]
5. Scattered neutron dose equivalent from an active scanning proton beam delivery system. Hecksel D; Sandison GA; Farr JB; Edwards AC Australas Phys Eng Sci Med; 2007 Dec; 30(4):326-30. PubMed ID: 18274074 [TBL] [Abstract][Full Text] [Related]
6. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother. Mesoloras G; Sandison GA; Stewart RD; Farr JB; Hsi WC Med Phys; 2006 Jul; 33(7):2479-90. PubMed ID: 16898451 [TBL] [Abstract][Full Text] [Related]
7. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy. Hälg RA; Besserer J; Boschung M; Mayer S; Lomax AJ; Schneider U Phys Med Biol; 2014 May; 59(10):2457-68. PubMed ID: 24778349 [TBL] [Abstract][Full Text] [Related]
8. Comparison of whole-body phantom designs to estimate organ equivalent neutron doses for secondary cancer risk assessment in proton therapy. Moteabbed M; Geyer A; Drenkhahn R; Bolch WE; Paganetti H Phys Med Biol; 2012 Jan; 57(2):499-515. PubMed ID: 22217682 [TBL] [Abstract][Full Text] [Related]
9. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049 [TBL] [Abstract][Full Text] [Related]
10. Secondary neutrons in clinical proton radiotherapy: a charged issue. Brenner DJ; Hall EJ Radiother Oncol; 2008 Feb; 86(2):165-70. PubMed ID: 18192046 [TBL] [Abstract][Full Text] [Related]
11. Shielding implications for secondary neutrons and photons produced within the patient during IMPT. DeMarco J; Kupelian P; Santhanam A; Low D Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit. Zheng Y; Fontenot J; Taddei P; Mirkovic D; Newhauser W Phys Med Biol; 2008 Jan; 53(1):187-201. PubMed ID: 18182696 [TBL] [Abstract][Full Text] [Related]
13. Measurement of neutron dose equivalent and its dependence on beam configuration for a passive scattering proton delivery system. Wang X; Sahoo N; Zhu RX; Zullo JR; Gillin MT Int J Radiat Oncol Biol Phys; 2010 Apr; 76(5):1563-70. PubMed ID: 20097484 [TBL] [Abstract][Full Text] [Related]
14. Fetal dose assessment in a pregnant patient with brain tumor: A comparative study of proton PBS and 3DCRT/VMAT radiation therapy techniques. Rahimi R; Taylor M; Li X; Chen KL; MacLennan G; Murdoch E; Chang L; Parniani A; Wang P; Chawla A; Fan J; Kim D J Appl Clin Med Phys; 2024 Aug; 25(8):e14394. PubMed ID: 38887816 [TBL] [Abstract][Full Text] [Related]
15. Shielding for neutron scattered dose to the fetus in patients treated with 18 MV x-ray beams. Roy SC; Sandison GA Med Phys; 2000 Aug; 27(8):1800-3. PubMed ID: 10984226 [TBL] [Abstract][Full Text] [Related]
16. Range shifter contribution to neutron exposure of patients undergoing proton pencil beam scanning. Romero-Expósito M; Liszka M; Christou A; Toma-Dasu I; Dasu A Med Phys; 2024 Jul; 51(7):5099-5108. PubMed ID: 38112191 [TBL] [Abstract][Full Text] [Related]
17. Radiation protection measurements around a 12 MeV mobile dedicated IORT accelerator. Soriani A; Felici G; Fantini M; Paolucci M; Borla O; Evangelisti G; Benassi M; Strigari L Med Phys; 2010 Mar; 37(3):995-1003. PubMed ID: 20384235 [TBL] [Abstract][Full Text] [Related]
18. Analytic estimates of secondary neutron dose in proton therapy. Anferov V Phys Med Biol; 2010 Dec; 55(24):7509-22. PubMed ID: 21098918 [TBL] [Abstract][Full Text] [Related]
19. Pitfalls of tungsten multileaf collimator in proton beam therapy. Moskvin V; Cheng CW; Das IJ Med Phys; 2011 Dec; 38(12):6395-406. PubMed ID: 22149823 [TBL] [Abstract][Full Text] [Related]
20. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms. Zacharatou Jarlskog C; Lee C; Bolch WE; Xu XG; Paganetti H Phys Med Biol; 2008 Feb; 53(3):693-717. PubMed ID: 18199910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]