BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27685165)

  • 1. Rapid Subtractive Patterning of Live Cell Layers with a Microfluidic Probe.
    Kashyap A; Cors JF; Lovchik RD; Kaigala GV
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27685165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe.
    Kashyap A; Autebert J; Delamarche E; Kaigala GV
    Sci Rep; 2016 Jul; 6():29579. PubMed ID: 27411740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical hydrodynamic flow confinement: efficient use and retrieval of chemicals for microscale chemistry on surfaces.
    Autebert J; Kashyap A; Lovchik RD; Delamarche E; Kaigala GV
    Langmuir; 2014 Apr; 30(12):3640-5. PubMed ID: 24625080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics in the "open space" for performing localized chemistry on biological interfaces.
    Kaigala GV; Lovchik RD; Delamarche E
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11224-40. PubMed ID: 23111955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated microfluidic probe station.
    Perrault CM; Qasaimeh MA; Brastaviceanu T; Anderson K; Kabakibo Y; Juncker D
    Rev Sci Instrum; 2010 Nov; 81(11):115107. PubMed ID: 21133501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Aperture Microfluidic Probes as Flow Dipole: Theory and Applications.
    Safavieh M; Qasaimeh MA; Vakil A; Juncker D; Gervais T
    Sci Rep; 2015 Jul; 5():11943. PubMed ID: 26169160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro fluorescence in situ hybridization (μFISH) for spatially multiplexed analysis of a cell monolayer.
    Huber D; Autebert J; Kaigala GV
    Biomed Microdevices; 2016 Apr; 18(2):40. PubMed ID: 27138995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microfluidic probe: operation and use for localized surface processing.
    Perrault CM; Qasaimeh MA; Juncker D
    J Vis Exp; 2009 Jun; (28):. PubMed ID: 19578328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens.
    Cors JF; Lovchik RD; Delamarche E; Kaigala GV
    Rev Sci Instrum; 2014 Mar; 85(3):034301. PubMed ID: 24689601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic probes for use in life sciences and medicine.
    Qasaimeh MA; Ricoult SG; Juncker D
    Lab Chip; 2013 Jan; 13(1):40-50. PubMed ID: 23042577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convection-Enhanced Biopatterning with Recirculation of Hydrodynamically Confined Nanoliter Volumes of Reagents.
    Autebert J; Cors JF; Taylor DP; Kaigala GV
    Anal Chem; 2016 Mar; 88(6):3235-42. PubMed ID: 26837532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multipurpose microfluidic probe.
    Juncker D; Schmid H; Delamarche E
    Nat Mater; 2005 Aug; 4(8):622-8. PubMed ID: 16041377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting.
    Wang X; Zheng J; Iyer MA; Szmelter AH; Eddington DT; Lee SS
    PLoS One; 2023; 18(1):e0279102. PubMed ID: 36649249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centimeter-Scale Surface Interactions Using Hydrodynamic Flow Confinements.
    Taylor DP; Zeaf I; Lovchik RD; Kaigala GV
    Langmuir; 2016 Oct; 32(41):10537-10544. PubMed ID: 27653338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic analysis of microfluidic probe design and operation.
    Gervais T; Safavieh M; Qasaimeh MA; Juncker D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1567-70. PubMed ID: 25570270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled droplet microfluidic systems for multistep chemical and biological assays.
    Kaminski TS; Garstecki P
    Chem Soc Rev; 2017 Oct; 46(20):6210-6226. PubMed ID: 28858351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale hydrodynamic confinements: shaping liquids across length scales as a toolbox in life sciences.
    Taylor DP; Mathur P; Renaud P; Kaigala GV
    Lab Chip; 2022 Apr; 22(8):1415-1437. PubMed ID: 35348555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure.
    Christ KV; Turner KT
    Lab Chip; 2011 Apr; 11(8):1491-501. PubMed ID: 21359386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.