These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27685165)

  • 41. Droplet-based microfluidics for binding assays and kinetics based on FRET.
    Srisa-Art M; Sharma S
    Methods Mol Biol; 2013; 949():231-40. PubMed ID: 23329447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Classification of fetal and adult red blood cells based on hydrodynamic deformation and deep video recognition.
    Kampen PJT; Støttrup-Als GR; Bruun-Andersen N; Secher J; Høier F; Hansen AT; Dziegiel MH; Christensen AN; Berg-Sørensen K
    Biomed Microdevices; 2023 Dec; 26(1):5. PubMed ID: 38095813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Patterning of cell-instructive hydrogels by hydrodynamic flow focusing.
    Cosson S; Allazetta S; Lutolf MP
    Lab Chip; 2013 Jun; 13(11):2099-105. PubMed ID: 23598796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D hydrodynamic focusing microfluidics for emerging sensing technologies.
    Daniele MA; Boyd DA; Mott DR; Ligler FS
    Biosens Bioelectron; 2015 May; 67():25-34. PubMed ID: 25041926
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic control of 3D chemical profiles with a single 2D microfluidic platform.
    Kim Y; Joshi SD; Davidson LA; LeDuc PR; Messner WC
    Lab Chip; 2011 Jul; 11(13):2182-8. PubMed ID: 21528131
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidic chemical analysis systems.
    Livak-Dahl E; Sinn I; Burns M
    Annu Rev Chem Biomol Eng; 2011; 2():325-53. PubMed ID: 22432622
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels.
    Janakiraman V; Sastry S; Kadambi JR; Baskaran H
    Biomed Microdevices; 2008 Jun; 10(3):355-65. PubMed ID: 18175219
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding the dynamics of fluid-structure interaction with an Air Deflected Microfluidic Chip (ADMC).
    Pas CT; Du K; Pan L; Wang RQ; Xu S
    Sci Rep; 2022 Nov; 12(1):20399. PubMed ID: 36437301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.
    Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2015 Mar; 15(6):1545-53. PubMed ID: 25648105
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity.
    Tan W; Desai TA
    Tissue Eng; 2003 Apr; 9(2):255-67. PubMed ID: 12740088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Trends in computational simulations of electrochemical processes under hydrodynamic flow in microchannels.
    Santillo MF; Ewing AG; Heien ML
    Anal Bioanal Chem; 2011 Jan; 399(1):183-90. PubMed ID: 20734034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic platforms with monolithically integrated hierarchical apertures for the facile and rapid formation of cargo-carrying vesicles.
    Cho H; Kim J; Suga K; Ishigami T; Park H; Bang JW; Seo S; Choi M; Chang PS; Umakoshi H; Jung HS; Suh KY
    Lab Chip; 2015 Jan; 15(2):373-7. PubMed ID: 25422046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Droplet-based microfluidics: enabling impact on drug discovery.
    Dressler OJ; Maceiczyk RM; Chang SI; deMello AJ
    J Biomol Screen; 2014 Apr; 19(4):483-96. PubMed ID: 24241711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial characterization of a multifunctional pipette for drug delivery in hippocampal brain slices.
    Ahemaiti A; Wigström H; Ainla A; Jeffries GD; Orwar O; Jesorka A; Jardemark K
    J Neurosci Methods; 2015 Feb; 241():132-6. PubMed ID: 25554414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic lithography of SAMs on gold to create dynamic surfaces for directed cell migration and contiguous cell cocultures.
    Lamb BM; Barrett DG; Westcott NP; Yousaf MN
    Langmuir; 2008 Aug; 24(16):8885-9. PubMed ID: 18627184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.