BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27685324)

  • 1. Enzymatic activity of cell-free extracts from Burkholderia oxyphila OX-01 bio-converts (+)-catechin and (-)-epicatechin to (+)-taxifolin.
    Otsuka Y; Matsuda M; Sonoki T; Sato-Izawa K; Goodell B; Jelison J; Navarro RR; Murata H; Nakamura M
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2473-2479. PubMed ID: 27685324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of (+)-catechin into taxifolin by a two-step oxidation: primary stage of (+)-catechin metabolism by a novel (+)-catechin-degrading bacteria, Burkholderia sp. KTC-1, isolated from tropical peat.
    Matsuda M; Otsuka Y; Jin S; Wasaki J; Watanabe J; Watanabe T; Osaki M
    Biochem Biophys Res Commun; 2008 Feb; 366(2):414-9. PubMed ID: 18068670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of sulfated quercetin and epicatechin metabolites.
    Dueñas M; González-Manzano S; Surco-Laos F; González-Paramas A; Santos-Buelga C
    J Agric Food Chem; 2012 Apr; 60(14):3592-8. PubMed ID: 22420600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quercetin 7-O-glucoside suppresses nitrite-induced formation of dinitrosocatechins and their quinones in catechin/nitrite systems under stomach simulating conditions.
    Morina F; Takahama U; Yamauchi R; Hirota S; Veljovic-Jovanovic S
    Food Funct; 2015 Jan; 6(1):219-29. PubMed ID: 25375233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin.
    Dueñas M; González-Manzano S; González-Paramás A; Santos-Buelga C
    J Pharm Biomed Anal; 2010 Jan; 51(2):443-9. PubMed ID: 19442472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-proliferative effects of quercetin and catechin metabolites.
    Delgado L; Fernandes I; González-Manzano S; de Freitas V; Mateus N; Santos-Buelga C
    Food Funct; 2014 Apr; 5(4):797-803. PubMed ID: 24573487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin.
    Wellmann F; Griesser M; Schwab W; Martens S; Eisenreich W; Matern U; Lukacin R
    FEBS Lett; 2006 Mar; 580(6):1642-8. PubMed ID: 16494872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by intestinal bacteria involved in isoflavone metabolism.
    Takagaki A; Nanjo F
    Biosci Biotechnol Biochem; 2016; 80(1):199-202. PubMed ID: 26312950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (-)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase.
    Çelik H; Koşar M; Arinç E
    Toxicology; 2013 Jun; 308():34-40. PubMed ID: 23567315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea.
    Munoz-Munoz JL; García-Molina F; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    J Agric Food Chem; 2008 Oct; 56(19):9215-24. PubMed ID: 18788750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between (+)-catechin and quercetin during their oxidation by nitrite under the conditions simulating the stomach.
    Veljovic-Jovanovic S; Morina F; Yamauchi R; Hirota S; Takahama U
    J Agric Food Chem; 2014 May; 62(21):4951-9. PubMed ID: 24785370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delaying effect of a wine Lactobacillus plantarum strain on the coloration and xanthylium pigment formation occurring in (+)-catechin and (-)-epicatechin wine model solutions.
    Curiel JA; Muñoz R; López de Felipe F
    J Agric Food Chem; 2010 Nov; 58(21):11318-24. PubMed ID: 20925383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of 3,4-cis-[3H]leucocyanidin and enzymatic reduction to catechin.
    Tanner GJ; Kristiansen KN
    Anal Biochem; 1993 Mar; 209(2):274-7. PubMed ID: 8470799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by (-)-epigallocatechin-metabolizing bacteria.
    Takagaki A; Nanjo F
    Biol Pharm Bull; 2015; 38(5):789-94. PubMed ID: 25947926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin].
    Barsukova ME; Tokareva AI; Buslova TS; Malinina LI; Veselova IA; Shekhovtsova TN
    Prikl Biokhim Mikrobiol; 2017; 53(2):146-54. PubMed ID: 29508971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing effect of a cysteinyl thiol on the antioxidant activity of flavonoids and identification of the antioxidative thiol adducts of myricetin.
    Masuda T; Miura Y; Inai M; Masuda A
    Biosci Biotechnol Biochem; 2013; 77(8):1753-8. PubMed ID: 23924742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase.
    Kostyuk VA; Potapovich AI; Strigunova EN; Kostyuk TV; Afanas'ev IB
    Arch Biochem Biophys; 2004 Aug; 428(2):204-8. PubMed ID: 15246878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots.
    Bais HP; Walker TS; Kennan AJ; Stermitz FR; Vivanco JM
    J Agric Food Chem; 2003 Feb; 51(4):897-901. PubMed ID: 12568546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-property studies on the antioxidant activity of flavonoids present in diet.
    Teixeira S; Siquet C; Alves C; Boal I; Marques MP; Borges F; Lima JL; Reis S
    Free Radic Biol Med; 2005 Oct; 39(8):1099-108. PubMed ID: 16198236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between (+)-catechin and (-)-epicatechin in acetaldehyde-induced polymerization of flavanols.
    Es-Safi NE; Fulcrand H; Cheynier V; Moutounet M
    J Agric Food Chem; 1999 May; 47(5):2088-95. PubMed ID: 10552501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.