These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2768559)

  • 1. Descending pathways to the spinal cord: II. Quantitative study of the tectospinal tract in 23 mammals.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1989 Aug; 286(1):96-119. PubMed ID: 2768559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending pathways to the spinal cord: a comparative study of 22 mammals.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1988 Nov; 277(1):53-79. PubMed ID: 3198796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1990 Jun; 296(4):559-83. PubMed ID: 2113540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending pathways to the spinal cord, IV: Some factors related to the amount of cortex devoted to the corticospinal tract.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1990 Jun; 296(4):584-97. PubMed ID: 2113541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation and evolution of mammalian corticospinal somata with special reference to primates.
    Nudo RJ; Sutherland DP; Masterton RB
    J Comp Neurol; 1995 Jul; 358(2):181-205. PubMed ID: 7560281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell bodies of origin of reticular projections from the superior colliculus in the cat: an experimental study with the use of horseradish peroxidase as a tracer.
    Kawamura K; Hashikawa T
    J Comp Neurol; 1978 Nov; 182(1):1-15. PubMed ID: 701486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural and functional characteristics of tectospinal neurons in the golden hamster.
    Rhoades RW; Mooney RD; Klein BG; Jacquin MF; Szczepanik AM; Chiaia NL
    J Comp Neurol; 1987 Jan; 255(3):451-65. PubMed ID: 3819025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending projection neurons to the spinal cord of the goldfish, Carassius auratus.
    Prasada Rao PD; Jadhao AG; Sharma SC
    J Comp Neurol; 1987 Nov; 265(1):96-108. PubMed ID: 2826554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter- and intra-laminar distribution of tectospinal neurons in 23 mammals.
    Nudo RJ; Sutherland DP; Masterton RB
    Brain Behav Evol; 1993; 42(1):1-23. PubMed ID: 8324621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projections of the tectospinal tract to the upper cervical spinal cord of the cat: a study with the anterograde tracer PHA-L.
    Rose PK; MacDonald J; Abrahams VC
    J Comp Neurol; 1991 Dec; 314(1):91-105. PubMed ID: 1797878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling.
    Lázár G; Tóth P; Csank G; Kicliter E
    J Comp Neurol; 1983 Mar; 215(1):108-20. PubMed ID: 6602154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in descending brain-spinal cord projections with age in larval lamprey: implications for spinal cord injury.
    Zhang L; Palmer R; McClellan AD
    J Comp Neurol; 2002 May; 447(2):128-37. PubMed ID: 11977116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy.
    Swain GP; Ayers J; Selzer ME
    J Comp Neurol; 1995 Nov; 362(4):453-67. PubMed ID: 8636461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations on the somatodendritic morphology and axonal trajectory of intracellularly HRP-labeled efferent neurons located in the deeper layers of the superior colliculus of the cat.
    Moschovakis AK; Karabelas AB
    J Comp Neurol; 1985 Sep; 239(3):276-308. PubMed ID: 4044941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localizing spinal-cord-projecting neurons in neonatal and immature albino rats.
    Leong SK; Shieh JY; Wong WC
    J Comp Neurol; 1984 Sep; 228(1):18-23. PubMed ID: 6480907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative number of cells projecting from contralateral and ipsilateral nucleus isthmi to loci in the optic tectum is dependent on visuotopic location: horseradish peroxidase study in the leopard frog.
    Dudkin EA; Gruberg ER
    J Comp Neurol; 1999 Nov; 414(2):212-6. PubMed ID: 10516592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the pyramidal tract in the hamster. I. A light microscopic study.
    Reh T; Kalil K
    J Comp Neurol; 1981 Jul; 200(1):55-67. PubMed ID: 7251945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of cerebellar projections to the region of the oculomotor complex, medial pontine reticular formation, and superior colliculus in New World monkeys: a retrograde horseradish peroxidase study.
    Gonzalo-Ruiz A; Leichnetz GR; Smith DJ
    J Comp Neurol; 1988 Feb; 268(4):508-26. PubMed ID: 3356803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase.
    Roppolo JR; Nadelhaft I; de Groat WC
    J Comp Neurol; 1985 Apr; 234(4):475-88. PubMed ID: 3988996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The pyramidal tract. Recent anatomic and physiologic findings].
    Armand J
    Rev Neurol (Paris); 1984; 140(5):309-29. PubMed ID: 6379818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.