These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 27685835)
1. The extreme hyper-reactivity of selected cysteines drives hierarchical disulfide bond formation in serum albumin. Bocedi A; Fabrini R; Pedersen JZ; Federici G; Iavarone F; Martelli C; Castagnola M; Ricci G FEBS J; 2016 Nov; 283(22):4113-4127. PubMed ID: 27685835 [TBL] [Abstract][Full Text] [Related]
2. Trypsinogen and chymotrypsinogen: the mysterious hyper-reactivity of selected cysteines is still present after their divergent evolution. Cattani G; Bocedi A; Gambardella G; Iavarone F; Boroumand M; Castagnola M; Ricci G FEBS J; 2021 Oct; 288(20):6003-6018. PubMed ID: 33876866 [TBL] [Abstract][Full Text] [Related]
3. Ultra-Rapid Glutathionylation of Ribonuclease: Is this the Real Incipit of its Oxidative Folding? Bocedi A; Cattani G; Gambardella G; Ticconi S; Cozzolino F; Di Fusco O; Pucci P; Ricci G Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683668 [TBL] [Abstract][Full Text] [Related]
4. New Factors Enhancing the Reactivity of Cysteines in Molten Globule-Like Structures. Gambardella G; Cattani G; Bocedi A; Ricci G Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971812 [TBL] [Abstract][Full Text] [Related]
5. Ultra-rapid glutathionylation of chymotrypsinogen in its molten globule-like conformation: A comparison to archaeal proteins. Bocedi A; Gambardella G; Cattani G; Bartolucci S; Limauro D; Pedone E; Iavarone F; Castagnola M; Ricci G Sci Rep; 2020 Jun; 10(1):8943. PubMed ID: 32488029 [TBL] [Abstract][Full Text] [Related]
6. The unusual properties of lactoferrin during its nascent phase. Notari S; Gambardella G; Vincenzoni F; Desiderio C; Castagnola M; Bocedi A; Ricci G Sci Rep; 2023 Aug; 13(1):14113. PubMed ID: 37644064 [TBL] [Abstract][Full Text] [Related]
7. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model. Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746 [TBL] [Abstract][Full Text] [Related]
8. The extreme hyper-reactivity of Cys94 in lysozyme avoids its amorphous aggregation. Bocedi A; Cattani G; Martelli C; Cozzolino F; Castagnola M; Pucci P; Ricci G Sci Rep; 2018 Oct; 8(1):16050. PubMed ID: 30375487 [TBL] [Abstract][Full Text] [Related]
9. The basics of thiols and cysteines in redox biology and chemistry. Poole LB Free Radic Biol Med; 2015 Mar; 80():148-57. PubMed ID: 25433365 [TBL] [Abstract][Full Text] [Related]
10. Determination of the disulfide bridges in factor Va heavy chain. Xue J; Kalafatis M; Silveira JR; Kung C; Mann KG Biochemistry; 1994 Nov; 33(44):13109-16. PubMed ID: 7947716 [TBL] [Abstract][Full Text] [Related]
11. Disulfide bond-coupled folding of bovine pancreatic trypsin inhibitor derivatives missing one or two disulfide bonds. Kosen PA; Marks CB; Falick AM; Anderson S; Kuntz ID Biochemistry; 1992 Jun; 31(25):5705-17. PubMed ID: 1377024 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobic interactions accelerate early stages of the folding of BPTI. Dadlez M Biochemistry; 1997 Mar; 36(10):2788-97. PubMed ID: 9062106 [TBL] [Abstract][Full Text] [Related]
13. Global methods to monitor the thiol-disulfide state of proteins in vivo. Leichert LI; Jakob U Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668 [TBL] [Abstract][Full Text] [Related]
14. Thiol disulfide exchange reactions in human serum albumin: the apparent paradox of the redox transitions of Cys Bocedi A; Cattani G; Stella L; Massoud R; Ricci G FEBS J; 2018 Sep; 285(17):3225-3237. PubMed ID: 30028086 [TBL] [Abstract][Full Text] [Related]
15. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity. Yen TY; Macher BA; Bryson S; Chang X; Tvaroska I; Tse R; Takeshita S; Lew AM; Datti A J Biol Chem; 2003 Nov; 278(46):45864-81. PubMed ID: 12954635 [TBL] [Abstract][Full Text] [Related]
16. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Nelson JW; Creighton TE Biochemistry; 1994 May; 33(19):5974-83. PubMed ID: 8180227 [TBL] [Abstract][Full Text] [Related]
17. Counting the number of disulfides and thiol groups in proteins and a novel approach for determining the local pKa for cysteine groups in proteins in vivo. Bellacchio E; McFarlane KL; Rompel A; Robblee JH; Cinco RM; Yachandra VK J Synchrotron Radiat; 2001 May; 8(3):1056-8. PubMed ID: 11486415 [TBL] [Abstract][Full Text] [Related]
18. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1. Frech C; Schmid FX J Mol Biol; 1995 Aug; 251(1):135-49. PubMed ID: 7643382 [TBL] [Abstract][Full Text] [Related]
19. Thiol-Disulfide Exchange in Human Growth Hormone. Chandrasekhar S; Moorthy BS; Xie R; Topp EM Pharm Res; 2016 Jun; 33(6):1370-82. PubMed ID: 26887678 [TBL] [Abstract][Full Text] [Related]
20. Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu. Hansen RE; Østergaard H; Winther JR Biochemistry; 2005 Apr; 44(15):5899-906. PubMed ID: 15823049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]