BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27685835)

  • 1. The extreme hyper-reactivity of selected cysteines drives hierarchical disulfide bond formation in serum albumin.
    Bocedi A; Fabrini R; Pedersen JZ; Federici G; Iavarone F; Martelli C; Castagnola M; Ricci G
    FEBS J; 2016 Nov; 283(22):4113-4127. PubMed ID: 27685835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypsinogen and chymotrypsinogen: the mysterious hyper-reactivity of selected cysteines is still present after their divergent evolution.
    Cattani G; Bocedi A; Gambardella G; Iavarone F; Boroumand M; Castagnola M; Ricci G
    FEBS J; 2021 Oct; 288(20):6003-6018. PubMed ID: 33876866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-Rapid Glutathionylation of Ribonuclease: Is this the Real Incipit of its Oxidative Folding?
    Bocedi A; Cattani G; Gambardella G; Ticconi S; Cozzolino F; Di Fusco O; Pucci P; Ricci G
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Factors Enhancing the Reactivity of Cysteines in Molten Globule-Like Structures.
    Gambardella G; Cattani G; Bocedi A; Ricci G
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-rapid glutathionylation of chymotrypsinogen in its molten globule-like conformation: A comparison to archaeal proteins.
    Bocedi A; Gambardella G; Cattani G; Bartolucci S; Limauro D; Pedone E; Iavarone F; Castagnola M; Ricci G
    Sci Rep; 2020 Jun; 10(1):8943. PubMed ID: 32488029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unusual properties of lactoferrin during its nascent phase.
    Notari S; Gambardella G; Vincenzoni F; Desiderio C; Castagnola M; Bocedi A; Ricci G
    Sci Rep; 2023 Aug; 13(1):14113. PubMed ID: 37644064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P
    Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The extreme hyper-reactivity of Cys94 in lysozyme avoids its amorphous aggregation.
    Bocedi A; Cattani G; Martelli C; Cozzolino F; Castagnola M; Pucci P; Ricci G
    Sci Rep; 2018 Oct; 8(1):16050. PubMed ID: 30375487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The basics of thiols and cysteines in redox biology and chemistry.
    Poole LB
    Free Radic Biol Med; 2015 Mar; 80():148-57. PubMed ID: 25433365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the disulfide bridges in factor Va heavy chain.
    Xue J; Kalafatis M; Silveira JR; Kung C; Mann KG
    Biochemistry; 1994 Nov; 33(44):13109-16. PubMed ID: 7947716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide bond-coupled folding of bovine pancreatic trypsin inhibitor derivatives missing one or two disulfide bonds.
    Kosen PA; Marks CB; Falick AM; Anderson S; Kuntz ID
    Biochemistry; 1992 Jun; 31(25):5705-17. PubMed ID: 1377024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic interactions accelerate early stages of the folding of BPTI.
    Dadlez M
    Biochemistry; 1997 Mar; 36(10):2788-97. PubMed ID: 9062106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol disulfide exchange reactions in human serum albumin: the apparent paradox of the redox transitions of Cys
    Bocedi A; Cattani G; Stella L; Massoud R; Ricci G
    FEBS J; 2018 Sep; 285(17):3225-3237. PubMed ID: 30028086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity.
    Yen TY; Macher BA; Bryson S; Chang X; Tvaroska I; Tse R; Takeshita S; Lew AM; Datti A
    J Biol Chem; 2003 Nov; 278(46):45864-81. PubMed ID: 12954635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Nelson JW; Creighton TE
    Biochemistry; 1994 May; 33(19):5974-83. PubMed ID: 8180227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting the number of disulfides and thiol groups in proteins and a novel approach for determining the local pKa for cysteine groups in proteins in vivo.
    Bellacchio E; McFarlane KL; Rompel A; Robblee JH; Cinco RM; Yachandra VK
    J Synchrotron Radiat; 2001 May; 8(3):1056-8. PubMed ID: 11486415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1.
    Frech C; Schmid FX
    J Mol Biol; 1995 Aug; 251(1):135-49. PubMed ID: 7643382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-Disulfide Exchange in Human Growth Hormone.
    Chandrasekhar S; Moorthy BS; Xie R; Topp EM
    Pharm Res; 2016 Jun; 33(6):1370-82. PubMed ID: 26887678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu.
    Hansen RE; Østergaard H; Winther JR
    Biochemistry; 2005 Apr; 44(15):5899-906. PubMed ID: 15823049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.