BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

734 related articles for article (PubMed ID: 27686338)

  • 21. Probing the Hydrogen Bonding of the Ferrous-NO Heme Center of nNOS by Pulsed Electron Paramagnetic Resonance.
    Astashkin AV; Chen L; Elmore BO; Kunwar D; Miao Y; Li H; Poulos TL; Roman LJ; Feng C
    J Phys Chem A; 2015 Jun; 119(25):6641-9. PubMed ID: 26035438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and spectroscopic characterization of P450 BM3 mutants with unprecedented P450 heme iron ligand sets. New heme ligation states influence conformational equilibria in P450 BM3.
    Girvan HM; Seward HE; Toogood HS; Cheesman MR; Leys D; Munro AW
    J Biol Chem; 2007 Jan; 282(1):564-72. PubMed ID: 17077084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of axial ligand, spin state, and hydrogen bonding on the inner-sphere reorganization energies of functional models of cytochrome P450.
    Bandyopadhyay S; Rana A; Mittra K; Samanta S; Sengupta K; Dey A
    Inorg Chem; 2014 Oct; 53(19):10150-8. PubMed ID: 25238648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris.
    Clay MD; Emerson JP; Coulter ED; Kurtz DM; Johnson MK
    J Biol Inorg Chem; 2003 Jul; 8(6):671-82. PubMed ID: 12764688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase.
    Jackson TA; Yikilmaz E; Miller AF; Brunold TC
    J Am Chem Soc; 2003 Jul; 125(27):8348-63. PubMed ID: 12837107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of nitric oxide synthase-iron(II) nitrosoalkane complexes: severe restriction of access to the iron(II) site in the presence of tetrahydrobiopterin.
    Renodon A; Boucher JL; Wu C; Gachhui R; Sari MA; Mansuy D; Stuehr D
    Biochemistry; 1998 May; 37(18):6367-74. PubMed ID: 9572852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A proximal tryptophan in NO synthase controls activity by a novel mechanism.
    Adak S; Stuehr DJ
    J Inorg Biochem; 2001 Feb; 83(4):301-8. PubMed ID: 11293550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refolding processes of cytochrome P450cam from ferric and ferrous acid forms to the native conformation. Formations of folding intermediates with non-native heme coordination state.
    Egawa T; Hishiki T; Ichikawa Y; Kanamori Y; Shimada H; Takahashi S; Kitagawa T; Ishimura Y
    J Biol Chem; 2004 Jul; 279(31):32008-17. PubMed ID: 15128748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the Proximal Cysteine Hydrogen Bonding Interaction in Cytochrome P450 2B4 Studied by Cryoreduction, Electron Paramagnetic Resonance, and Electron-Nuclear Double Resonance Spectroscopy.
    Davydov R; Im S; Shanmugam M; Gunderson WA; Pearl NM; Hoffman BM; Waskell L
    Biochemistry; 2016 Feb; 55(6):869-83. PubMed ID: 26750753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of wild type neuronal nitric oxide synthase and its Tyr588Phe mutant towards various L-arginine analogues.
    Giroud C; Moreau M; Sagami I; Shimizu T; Frapart Y; Mansuy D; Boucher JL
    J Inorg Biochem; 2010 Oct; 104(10):1043-50. PubMed ID: 20630600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis for the inability of an oxygen atom donor ligand to replace the natural sulfur donor heme axial ligand in cytochrome P450 catalysis. Spectroscopic characterization of the Cys436Ser CYP2B4 mutant.
    Perera R; Sono M; Voegtle HL; Dawson JH
    Arch Biochem Biophys; 2011 Mar; 507(1):119-25. PubMed ID: 21147058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420.
    Wells AV; Li P; Champion PM; Martinis SA; Sligar SG
    Biochemistry; 1992 May; 31(18):4384-93. PubMed ID: 1581294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the distal heme pocket of H-NOX using fluoride as a probe for H-bonding interactions.
    Kosowicz JG; Boon EM
    J Inorg Biochem; 2013 Sep; 126():91-5. PubMed ID: 23792914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aromatic residues and neighboring Arg414 in the (6R)-5,6,7, 8-tetrahydro-L-biopterin binding site of full-length neuronal nitric-oxide synthase are crucial in catalysis and heme reduction with NADPH.
    Sagami I; Sato Y; Daff S; Shimizu T
    J Biol Chem; 2000 Aug; 275(34):26150-7. PubMed ID: 10846172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic circular dichroism studies of the active site heme coordination sphere of exogenous ligand-free ferric cytochrome c peroxidase from yeast: effects of sample history and pH.
    Pond AE; Sono M; Elenkova EA; McRee DE; Goodin DB; English AM; Dawson JH
    J Inorg Biochem; 1999 Sep; 76(3-4):165-74. PubMed ID: 10605835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.
    Girvan HM; Bradley JM; Cheesman MR; Kincaid JR; Liu Y; Czarnecki K; Fisher K; Leys D; Rigby SE; Munro AW
    Biochemistry; 2016 Sep; 55(36):5073-83. PubMed ID: 27546061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of the coordination chemistry of prostaglandin G/H synthase by resonance Raman spectroscopy.
    Gaspard S; Chottard G; Mahy JP; Mansuy D
    Eur J Biochem; 1996 Jun; 238(2):529-37. PubMed ID: 8681968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.