These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27686682)

  • 21. Influence of the Punch Head Design on the Physical Quality of Tablets Produced in a Rotary Press.
    Anbalagan P; Sarkar S; Liew CV; Heng PWS
    J Pharm Sci; 2017 Jan; 106(1):356-365. PubMed ID: 27842972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A formulation strategy for solving the overgranulation problem in high shear wet granulation.
    Osei-Yeboah F; Zhang M; Feng Y; Sun CC
    J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships between response surfaces for tablet characteristics of placebo and API-containing tablets manufactured by direct compression method.
    Hayashi Y; Tsuji T; Shirotori K; Oishi T; Kosugi A; Kumada S; Hirai D; Takayama K; Onuki Y
    Int J Pharm; 2017 Oct; 532(1):82-89. PubMed ID: 28859939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictions of tensile strength of binary tablets using linear and power law mixing rules.
    Michrafy A; Michrafy M; Kadiri MS; Dodds JA
    Int J Pharm; 2007 Mar; 333(1-2):118-26. PubMed ID: 17097245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellactose a co-processed excipient: a comparison study.
    Arida AI; Al-Tabakha MM
    Pharm Dev Technol; 2008; 13(2):165-75. PubMed ID: 18379907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of the compaction process and the properties of tablets made of a new co-processed starch excipient.
    Mužíková J; Eimerová I
    Drug Dev Ind Pharm; 2011 May; 37(5):576-82. PubMed ID: 21469946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test.
    Furukawa R; Chen Y; Horiguchi A; Takagaki K; Nishi J; Konishi A; Shirakawa Y; Sugimoto M; Narisawa S
    Int J Pharm; 2015 Sep; 493(1-2):182-91. PubMed ID: 26188313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of the validity of the three-point bending test for pharmaceutical round tablets using finite element method modeling.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2014 Apr; 103(4):1305-8. PubMed ID: 24523243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of different failure tests for pharmaceutical tablets: applicability of the Drucker-Prager failure criterion.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    Int J Pharm; 2014 Aug; 470(1-2):63-9. PubMed ID: 24810242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of unloading and ejection conditions on the properties of pharmaceutical tablets.
    Mazel V; Yost E; Sluga KK; Nagapudi K; Muliadi AR
    Int J Pharm; 2024 Jun; 658():124150. PubMed ID: 38663645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A material-sparing method for simultaneous determination of true density and powder compaction properties--aspartame as an example.
    Sun CC
    Int J Pharm; 2006 Dec; 326(1-2):94-9. PubMed ID: 16926076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reevaluation of the diametral compression test for tablets using the flattened disc geometry.
    Mazel V; Guerard S; Croquelois B; Kopp JB; Girardot J; Diarra H; Busignies V; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):669-677. PubMed ID: 27702696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of quantitative relationships between physicochemical properties of active pharmaceutical ingredients and tensile strength of tablets using a boosted tree.
    Hayashi Y; Oishi T; Shirotori K; Marumo Y; Kosugi A; Kumada S; Hirai D; Takayama K; Onuki Y
    Drug Dev Ind Pharm; 2018 Jul; 44(7):1090-1098. PubMed ID: 29376430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J; Kleinebudde P
    J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength.
    He X; Secreast PJ; Amidon GE
    J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach.
    Agrawal A; Dudhedia M; Deng W; Shepard K; Zhong L; Povilaitis E; Zimny E
    AAPS PharmSciTech; 2016 Feb; 17(1):214-32. PubMed ID: 26757898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Break force and tensile strength relationships for curved faced tablets subject to diametrical compression.
    Shang C; Sinka IC; Jayaraman B; Pan J
    Int J Pharm; 2013 Feb; 442(1-2):57-64. PubMed ID: 22975309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation.
    Uehara N; Hayashi Y; Mochida H; Otoguro S; Onuki Y; Obata Y; Takayama K
    Drug Dev Ind Pharm; 2016 Jan; 42(1):116-122. PubMed ID: 25997364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Image analysis quantification of sticking and picking events of pharmaceutical powders compressed on a rotary tablet press simulator.
    Mollereau G; Mazel V; Busignies V; Tchoreloff P; Mouveaux F; Rivière P
    Pharm Res; 2013 Sep; 30(9):2303-14. PubMed ID: 23797462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.