These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 27686942)

  • 1. Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation.
    Clark H; Feng J
    Accid Anal Prev; 2017 Sep; 106():468-479. PubMed ID: 27686942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related differences in takeover performance: A comparative analysis of older and younger drivers in prolonged partially automated driving.
    Pan H; Payre W; Xu J; Koppel S
    Traffic Inj Prev; 2024; 25(7):968-975. PubMed ID: 38860883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in effects of non-driving related tasks on takeover performance in automated driving.
    Wu Y; Kihara K; Hasegawa K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    J Safety Res; 2020 Feb; 72():231-238. PubMed ID: 32199568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving.
    Zeeb K; Buchner A; Schrauf M
    Accid Anal Prev; 2016 Jul; 92():230-9. PubMed ID: 27107472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of unreliable automation, non-driving related task, and takeover time budget on drivers' takeover performance and workload.
    Shahini F; Park J; Welch K; Zahabi M
    Ergonomics; 2023 Feb; 66(2):182-197. PubMed ID: 35451915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Task-Induced Fatigue in Prolonged Conditional Automated Driving.
    Jarosch O; Bellem H; Bengler K
    Hum Factors; 2019 Nov; 61(7):1186-1199. PubMed ID: 30657711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promote or inhibit: An inverted U-shaped effect of workload on driver takeover performance.
    Ma S; Zhang W; Yang Z; Kang C; Wu C; Chai C; Shi J; Li H
    Traffic Inj Prev; 2020; 21(7):482-487. PubMed ID: 32822218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of physiological responses as indicators of driver takeover readiness in conditionally automated driving.
    Deng M; Gluck A; Zhao Y; Li D; Menassa CC; Kamat VR; Brinkley J
    Accid Anal Prev; 2024 Feb; 195():107372. PubMed ID: 37979464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep in highly automated driving: Takeover performance after waking up.
    Wörle J; Metz B; Othersen I; Baumann M
    Accid Anal Prev; 2020 Sep; 144():105617. PubMed ID: 32540623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of takeover request modalities on highly automated car control transitions.
    Yoon SH; Kim YW; Ji YG
    Accid Anal Prev; 2019 Feb; 123():150-158. PubMed ID: 30503824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non-Driving Related Tasks on Takeover Time and Takeover Quality.
    Naujoks F; Purucker C; Wiedemann K; Marberger C
    Hum Factors; 2019 Jun; 61(4):596-613. PubMed ID: 30689440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of scheduled manual driving on drowsiness and response to take over request: A simulator study towards understanding drivers in automated driving.
    Wu Y; Kihara K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    Accid Anal Prev; 2019 Mar; 124():202-209. PubMed ID: 30665055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychophysiological responses to takeover requests in conditionally automated driving.
    Du N; Yang XJ; Zhou F
    Accid Anal Prev; 2020 Dec; 148():105804. PubMed ID: 33128991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is driving experience all that matters? Drivers' takeover performance in conditionally automated driving.
    Zhang N; Fard M; Davy JL; Parida S; Robinson SR
    J Safety Res; 2023 Dec; 87():323-331. PubMed ID: 38081705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring driving anger-caused impairment of takeover performance among professional taxi drivers during partially automated driving.
    Pan H; Payre W; Gao Z; Wang Y
    Accid Anal Prev; 2024 Sep; 205():107686. PubMed ID: 38909484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting driver takeover performance in conditionally automated driving.
    Du N; Zhou F; Pulver EM; Tilbury DM; Robert LP; Pradhan AK; Yang XJ
    Accid Anal Prev; 2020 Dec; 148():105748. PubMed ID: 33099127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prior Familiarization With Takeover Requests Affects Drivers' Takeover Performance and Automation Trust.
    Hergeth S; Lorenz L; Krems JF
    Hum Factors; 2017 May; 59(3):457-470. PubMed ID: 27923886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are child occupants a significant source of driving distraction?
    Koppel S; Charlton J; Kopinathan C; Taranto D
    Accid Anal Prev; 2011 May; 43(3):1236-44. PubMed ID: 21376923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms behind distracted driving behavior: The role of age and executive function in the engagement of distracted driving.
    Pope CN; Bell TR; Stavrinos D
    Accid Anal Prev; 2017 Jan; 98():123-129. PubMed ID: 27716494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.