These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27687122)

  • 21. Working memory in nonsymbolic approximate arithmetic processing: a dual-task study with preschoolers.
    Xenidou-Dervou I; van Lieshout EC; van der Schoot M
    Cogn Sci; 2014; 38(1):101-27. PubMed ID: 23855416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fractions: the new frontier for theories of numerical development.
    Siegler RS; Fazio LK; Bailey DH; Zhou X
    Trends Cogn Sci; 2013 Jan; 17(1):13-9. PubMed ID: 23219805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early predictors of middle school fraction knowledge.
    Bailey DH; Siegler RS; Geary DC
    Dev Sci; 2014 Sep; 17(5):775-85. PubMed ID: 24576209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving Preschoolers' Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic and Symbolic Training.
    Honoré N; Noël MP
    PLoS One; 2016; 11(11):e0166685. PubMed ID: 27875540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparisons of numerical magnitudes in children with different levels of mathematical achievement. An ERP study.
    Gómez-Velázquez FR; Berumen G; González-Garrido AA
    Brain Res; 2015 Nov; 1627():189-200. PubMed ID: 26385418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The developmental onset of symbolic approximation: beyond nonsymbolic representations, the language of numbers matters.
    Xenidou-Dervou I; Gilmore C; van der Schoot M; van Lieshout EC
    Front Psychol; 2015; 6():487. PubMed ID: 25972822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fractions Learning in Children With Mathematics Difficulties.
    Tian J; Siegler RS
    J Learn Disabil; 2017; 50(6):614-620. PubMed ID: 27491474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preschoolers prior formal mathematics education engage numerical magnitude representation rather than counting principles in symbolic ±1 arithmetic: Evidence from the operational momentum effect.
    Haman M; Lipowska K
    Dev Sci; 2023 May; 26(3):e13322. PubMed ID: 36069221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated theory of whole number and fractions development.
    Siegler RS; Thompson CA; Schneider M
    Cogn Psychol; 2011 Jun; 62(4):273-96. PubMed ID: 21569877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Relational SNARC: Spatial Representation of Nonsymbolic Ratios.
    Meng R; Matthews PG; Toomarian EY
    Cogn Sci; 2019 Aug; 43(8):e12778. PubMed ID: 31446660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The generative basis of natural number concepts.
    Leslie AM; Gelman R; Gallistel CR
    Trends Cogn Sci; 2008 Jun; 12(6):213-8. PubMed ID: 18468942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children's mathematics achievement.
    Holloway ID; Ansari D
    J Exp Child Psychol; 2009 May; 103(1):17-29. PubMed ID: 18513738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relations of different types of numerical magnitude representations to each other and to mathematics achievement.
    Fazio LK; Bailey DH; Thompson CA; Siegler RS
    J Exp Child Psychol; 2014 Jul; 123():53-72. PubMed ID: 24699178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Contribution of Numerical Magnitude Comparison and Phonological Processing to Individual Differences in Fourth Graders' Multiplication Fact Ability.
    Schleepen TM; Van Mier HI; De Smedt B
    PLoS One; 2016; 11(6):e0158335. PubMed ID: 27359328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical estimation in preschoolers.
    Berteletti I; Lucangeli D; Piazza M; Dehaene S; Zorzi M
    Dev Psychol; 2010 Mar; 46(2):545-51. PubMed ID: 20210512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental trajectories of children's symbolic numerical magnitude processing skills and associated cognitive competencies.
    Vanbinst K; Ceulemans E; Peters L; Ghesquière P; De Smedt B
    J Exp Child Psychol; 2018 Feb; 166():232-250. PubMed ID: 28946044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early predictors of high school mathematics achievement.
    Siegler RS; Duncan GJ; Davis-Kean PE; Duckworth K; Claessens A; Engel M; Susperreguy MI; Chen M
    Psychol Sci; 2012 Jul; 23(7):691-7. PubMed ID: 22700332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonsymbolic and Symbolic Numerical Magnitude Processing in the Brazilian Children with Mathematics Difficulties.
    Starling-Alves I; Júlio-Costa A; de Moura RJ; Haase VG
    Dement Neuropsychol; 2021; 15(4):524-532. PubMed ID: 35509800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Children's representation of symbolic and nonsymbolic magnitude examined with the priming paradigm.
    Defever E; Sasanguie D; Gebuis T; Reynvoet B
    J Exp Child Psychol; 2011 Jun; 109(2):174-86. PubMed ID: 21324472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Approximate number sense, symbolic number processing, or number-space mappings: what underlies mathematics achievement?
    Sasanguie D; Göbel SM; Moll K; Smets K; Reynvoet B
    J Exp Child Psychol; 2013 Mar; 114(3):418-31. PubMed ID: 23270796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.