BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27687220)

  • 1. Glutathione maintenance mitigates age-related susceptibility to redox cycling agents.
    Thomas NO; Shay KP; Kelley AR; Butler JA; Hagen TM
    Redox Biol; 2016 Dec; 10():45-52. PubMed ID: 27687220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroisotanshinone I protects against menadione-induced toxicity in a primary culture of rat hepatocytes.
    Ip SP; Yang H; Sun HD; Che CT
    Planta Med; 2002 Dec; 68(12):1077-81. PubMed ID: 12494333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity.
    Wefers H; Sies H
    Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related loss of mitochondrial glutathione exacerbates menadione-induced inhibition of Complex I.
    Thomas NO; Shay KP; Hagen TM
    Redox Biol; 2019 Apr; 22():101155. PubMed ID: 30851669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of schisandrin B enantiomers on cellular glutathione and menadione toxicity in AML12 hepatocytes.
    Chiu PY; Leung HY; Poon MK; Mak DH; Ko KM
    Pharmacology; 2006; 77(2):63-70. PubMed ID: 16636610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative importance of glutathione and metallothionein on protection of hepatotoxicity of menadione in rats.
    Chan HM; Tabarrok R; Tamura Y; Cherian MG
    Chem Biol Interact; 1992 Sep; 84(2):113-24. PubMed ID: 1394619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Menadione toxicity in two mouse liver established cell lines having striking genetic differences in quinone reductase activity and glutathione concentrations.
    Liu RM; Nebert DW; Shertzer HG
    Toxicol Appl Pharmacol; 1993 Sep; 122(1):101-7. PubMed ID: 7690996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress.
    Hu YR; Ma H; Zou ZY; He K; Xiao YB; Wang Y; Feng M; Ye XL; Li XG
    Biomed Pharmacother; 2017 Jan; 85():313-322. PubMed ID: 27903425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of N-acetyl-L-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes.
    Nakagawa Y; Suzuki T; Nakajima K; Inomata A; Ogata A; Nakae D
    Arch Toxicol; 2014 Jan; 88(1):115-26. PubMed ID: 23877122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous defenses against the cytotoxicity of hydrogen peroxide in cultured rat hepatocytes.
    Starke PE; Farber JL
    J Biol Chem; 1985 Jan; 260(1):86-92. PubMed ID: 3965466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of glutathione reductase during menadione-induced NADPH oxidation in isolated rat hepatocytes.
    Smith PF; Alberts DW; Rush GF
    Biochem Pharmacol; 1987 Nov; 36(22):3879-84. PubMed ID: 3689427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.
    Heart E; Palo M; Womack T; Smith PJ; Gray JP
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):216-25. PubMed ID: 22115979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.
    Gray JP; Karandrea S; Burgos DZ; Jaiswal AA; Heart EA
    Toxicol Lett; 2016 Nov; 262():1-11. PubMed ID: 27558805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protective effect of sulfite on menadione- and diquat-induced cytotoxicity in isolated rat hepatocytes.
    Sun YP; Cotgreave IA; Lindeke B; Moldéus P
    Pharmacol Toxicol; 1990 May; 66(5):393-8. PubMed ID: 2371247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of protection from menadione toxicity by 5,10-dihydroindeno[1,2,-b]indole in a sensitive and resistant mouse hepatocyte line.
    Liu RM; Sainsbury M; Tabor MW; Shertzer HG
    Biochem Pharmacol; 1993 Oct; 46(8):1491-9. PubMed ID: 8240401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone).
    Bellomo G; Mirabelli F; DiMonte D; Richelmi P; Thor H; Orrenius C; Orrenius S
    Biochem Pharmacol; 1987 Apr; 36(8):1313-20. PubMed ID: 3593416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities, and protects isolated atria from menadione toxicity.
    Floreani M; Napoli E; Quintieri L; Palatini P
    Life Sci; 2003 May; 72(24):2741-50. PubMed ID: 12679191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Menadione-induced cell degeneration is related to lipid peroxidation in human cancer cells.
    Chiou TJ; Chou YT; Tzeng WF
    Proc Natl Sci Counc Repub China B; 1998 Jan; 22(1):13-21. PubMed ID: 9536516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of antioxidant defences in the species-specific response of isolated atria to menadione.
    Floreani M; Napoli E; Palatini P
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Jun; 132(2):143-51. PubMed ID: 12106891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular thiols as a determinant of responsiveness to menadione in cardiomyocytes.
    Tzeng WF; Chiou TJ; Wang CP; Lee JL; Chen YH
    J Mol Cell Cardiol; 1994 Jul; 26(7):889-97. PubMed ID: 7966357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.