These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 27687229)

  • 1. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.
    Oh HJ; Moon HY; Cheon SA; Hahn Y; Kang HA
    J Microbiol; 2016 Oct; 54(10):667-74. PubMed ID: 27687229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity.
    Iyer SP; Hart GW
    J Biol Chem; 2003 Jul; 278(27):24608-16. PubMed ID: 12724313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II.
    Lu L; Fan D; Hu CW; Worth M; Ma ZX; Jiang J
    Biochemistry; 2016 Feb; 55(7):1149-58. PubMed ID: 26807597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates.
    Lazarus BD; Love DC; Hanover JA
    Glycobiology; 2006 May; 16(5):415-21. PubMed ID: 16434389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast cells as an assay system for in vivo O-GlcNAc modification.
    Nakanishi H; Li F; Han B; Arai S; Gao XD
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):1159-1167. PubMed ID: 28263870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro.
    Qi J; Wang R; Zeng Y; Yu W; Gu Y
    Prep Biochem Biotechnol; 2017 Aug; 47(7):699-702. PubMed ID: 28296566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells.
    Ramirez DH; Aonbangkhen C; Wu HY; Naftaly JA; Tang S; O'Meara TR; Woo CM
    ACS Chem Biol; 2020 Apr; 15(4):1059-1066. PubMed ID: 32119511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity.
    Lubas WA; Hanover JA
    J Biol Chem; 2000 Apr; 275(15):10983-8. PubMed ID: 10753899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conserved threonine-rich region of the HCF-1
    Kapuria V; Röhrig UF; Waridel P; Lammers F; Borodkin VS; van Aalten DMF; Zoete V; Herr W
    J Biol Chem; 2018 Nov; 293(46):17754-17768. PubMed ID: 30224358
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of novel O-GlcNAc transferase substrates using yeast cells expressing OGT.
    Li F; Yang G; Tachikawa H; Shao K; Yang Y; Gao XD; Nakanishi H
    J Gen Appl Microbiol; 2021 Apr; 67(1):33-41. PubMed ID: 33229814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates.
    Shen DL; Gloster TM; Yuzwa SA; Vocadlo DJ
    J Biol Chem; 2012 May; 287(19):15395-408. PubMed ID: 22311971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats.
    Rafie K; Raimi O; Ferenbach AT; Borodkin VS; Kapuria V; van Aalten DMF
    Open Biol; 2017 Jun; 7(6):. PubMed ID: 28659383
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Liu L; Li L; Ma C; Shi Y; Liu C; Xiao Z; Zhang Y; Tian F; Gao Y; Zhang J; Ying W; Wang PG; Zhang L
    J Biol Chem; 2019 Nov; 294(45):16620-16633. PubMed ID: 31527085
    [No Abstract]   [Full Text] [Related]  

  • 14. Truncation of the TPR domain of OGT alters substrate and glycosite selection.
    Ramirez DH; Yang B; D'Souza AK; Shen D; Woo CM
    Anal Bioanal Chem; 2021 Dec; 413(30):7385-7399. PubMed ID: 34725712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential role of YlMPO1, a novel Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN4, in mannosylphosphorylation of N- and O-linked glycans.
    Park JN; Song Y; Cheon SA; Kwon O; Oh DB; Jigami Y; Kim JY; Kang HA
    Appl Environ Microbiol; 2011 Feb; 77(4):1187-95. PubMed ID: 21183647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily.
    Wrabl JO; Grishin NV
    J Mol Biol; 2001 Nov; 314(3):365-74. PubMed ID: 11846551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection.
    Joiner CM; Levine ZG; Aonbangkhen C; Woo CM; Walker S
    J Am Chem Soc; 2019 Aug; 141(33):12974-12978. PubMed ID: 31373491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The active site of O-GlcNAc transferase imposes constraints on substrate sequence.
    Pathak S; Alonso J; Schimpl M; Rafie K; Blair DE; Borodkin VS; Albarbarawi O; van Aalten DMF
    Nat Struct Mol Biol; 2015 Sep; 22(9):744-750. PubMed ID: 26237509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes.
    Kapuria V; Röhrig UF; Bhuiyan T; Borodkin VS; van Aalten DM; Zoete V; Herr W
    Genes Dev; 2016 Apr; 30(8):960-72. PubMed ID: 27056667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in
    Willems AP; Gundogdu M; Kempers MJE; Giltay JC; Pfundt R; Elferink M; Loza BF; Fuijkschot J; Ferenbach AT; van Gassen KLI; van Aalten DMF; Lefeber DJ
    J Biol Chem; 2017 Jul; 292(30):12621-12631. PubMed ID: 28584052
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.