BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27687502)

  • 21. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.
    Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L
    Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution.
    Líbalová H; Costa PM; Olsson M; Farcal L; Ortelli S; Blosi M; Topinka J; Costa AL; Fadeel B
    Chemosphere; 2018 Apr; 196():482-493. PubMed ID: 29324388
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Henson TE; Navratilova J; Tennant AH; Bradham KD; Rogers KR; Hughes MF
    Nanotoxicology; 2019 Aug; 13(6):795-811. PubMed ID: 30938207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice.
    Wang S; Liu H; Zhang Y; Xin H
    Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells.
    Ahamed M; Siddiqui MA; Akhtar MJ; Ahmad I; Pant AB; Alhadlaq HA
    Biochem Biophys Res Commun; 2010 May; 396(2):578-83. PubMed ID: 20447378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intranasal Delivery of Copper Oxide Nanoparticles Induces Pulmonary Toxicity and Fibrosis in C57BL/6 mice.
    Lai X; Zhao H; Zhang Y; Guo K; Xu Y; Chen S; Zhang J
    Sci Rep; 2018 Mar; 8(1):4499. PubMed ID: 29540716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel assessment system of toxicity and stability of CuO nanoparticles via copper super sensitive Saccharomyces cerevisiae mutants.
    Chen X; Zhang R; Sun J; Simth N; Zhao M; Lee J; Ke Q; Wu X
    Toxicol In Vitro; 2020 Dec; 69():104969. PubMed ID: 32805373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response.
    Piret JP; Jacques D; Audinot JN; Mejia J; Boilan E; Noël F; Fransolet M; Demazy C; Lucas S; Saout C; Toussaint O
    Nanoscale; 2012 Nov; 4(22):7168-84. PubMed ID: 23070296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis.
    Hanagata N; Zhuang F; Connolly S; Li J; Ogawa N; Xu M
    ACS Nano; 2011 Dec; 5(12):9326-38. PubMed ID: 22077320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba.
    Perreault F; Popovic R; Dewez D
    Environ Pollut; 2014 Feb; 185():219-27. PubMed ID: 24286697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae.
    Sun Y; Zhang G; He Z; Wang Y; Cui J; Li Y
    Int J Nanomedicine; 2016; 11():905-18. PubMed ID: 27022258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites.
    Yue L; Zhao J; Yu X; Lv K; Wang Z; Xing B
    Environ Pollut; 2018 Dec; 243(Pt A):543-552. PubMed ID: 30223239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).
    Ahamed M; Ali D; Alhadlaq HA; Akhtar MJ
    Chemosphere; 2013 Nov; 93(10):2514-22. PubMed ID: 24139157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats.
    De Jong WH; De Rijk E; Bonetto A; Wohlleben W; Stone V; Brunelli A; Badetti E; Marcomini A; Gosens I; Cassee FR
    Nanotoxicology; 2019 Feb; 13(1):50-72. PubMed ID: 30451559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae.
    Mashock MJ; Kappell AD; Hallaj N; Hristova KR
    Environ Toxicol Chem; 2016 Jan; 35(1):134-43. PubMed ID: 26178758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of long-term toxicity of CuO NPs to microalgae.
    Che X; Ding R; Li Y; Zhang Z; Gao H; Wang W
    Nanotoxicology; 2018 Oct; 12(8):923-939. PubMed ID: 30182775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy.
    Angelé-Martínez C; Nguyen KV; Ameer FS; Anker JN; Brumaghim JL
    Nanotoxicology; 2017 Mar; 11(2):278-288. PubMed ID: 28248593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology.
    Sajjad H; Sajjad A; Haya RT; Khan MM; Zia M
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109682. PubMed ID: 37328134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu²⁺: an exploratory biomarker discovery.
    Gomes T; Chora S; Pereira CG; Cardoso C; Bebianno MJ
    Aquat Toxicol; 2014 Oct; 155():327-36. PubMed ID: 25089921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.